
Cloud First
Architecture

Patterns and Practices for the Cloud

WELCOME

Cameron Vetter

Cameron Vetter is a technologist with 20 years of experience using Microsoft tools and technologies to
develop software. Cameron has experience in many roles including Development, Architecture,
Infrastructure, Management, and Leadership roles. He recently received a Microsoft MVP award for his
evangelism work around Deep Learning in Azure. He has worked for some of the largest companies in the
world as well as small companies getting a breadth of experience helping him understand the needs of
different size businesses and different Industries. Currently, Cameron is the Principal Architect at the Octavian
Technology Group, where he helps clients develop Technical Strategies. He also helps clients Architect,
Design, and Develop software focusing on Deep Learning / AI, Cloud Architecture, Microservices, Mixed Reality,
and Azure.

Cloud / Machine Learning / Mixed Reality Consultant

A Partner to Advise and Support

About Us

Our team offers a combined decades of
experience in technology-related fields, and we
leverage our expertise to take a business-focused
approach to helping organizations solve real
problems with proven solutions.

Octavian TG offers Cloud Architecture, Mixed
Reality Development, Data Science, Machine
Learning, Fractional CIO, and Agile trainers.

5

Why Azure?

Everything we talk about today can be applied to any major cloud providers’ offerings. I use Azure as

example, because they have the most sophisticated offering and I have the most familiarity with it.

Credit: Azure Architecture Center @ https://docs.microsoft.com/en-us/azure/architecture/

Introduction

Hosting Model

Architecture Styles

Design Principles

Best Practices

Cloud Design Patterns

Performance Antipatterns

Agenda

Question & Answer

Hosting Model

Infrastructure AAS Platform AAS Functions AAS

Cloud Hosting Models
/ Good, Better, Best /

Servers. Network, and Data Center
management managed by Cloud
Provider.

Availability Sets allow duplicate VM’s to
exist in different data centers for
scaling.

Closest to on premise, allowing for lift
and shift migrations.

ADVANTAGES

Security is completely dependent on
proper configuration of the plafform.

Operating System Updates, Application
installation,, and database server
management unchanged.

Lift and shift migrations usually
reproduce most of your problems in a
new location.

DISADVANTAGES

INFRASTRUCTURE AS A SERVICE
/ Good/

All levels of the infrastructure are
managed by the cloud provider

Most security is handled by the cloud
providers security team.

Automatic scaling and replication is
available.

ADVANTAGES

Application and Services are
responsible for not opening up security
holes.

Application and Service change
management is unchanged.

DISADVANTAGES

PLATFORM AS A SERVICE
/ Better /

Creation of compute is handled by the
platform, no need to worry about
selecting the right resources.

Extremely cost efficient.

ADVANTAGES

Limited to the FAAS platforms selection
of tools and languages.

Lack of flexibility, software must be
designed with a SOA pattern.

DISADVANTAGES

FUNCTIONS AS A SERVICE
/ Best /

Lift and Shift

A strategy for migrating a workload to the
cloud without redesigning the application or
making code changes. Sometimes
called rehosting.

Cloud Optimized

A strategy for migrating to the cloud by
refactoring an application to take

advantage of cloud-native features and
capabilities.

Architecture Styles

Architectures
Dependency Management Appropriate for your Domain Type

Vertically decomposed

services that interact

through an API

Microservices

Front and Backend

jobs decoupled with

async messaging

Web-Queue-Worker

Producer / Consumer.

Each subsystem is

independent.

Event Driven

Horizontal tiers

N-tier

Traditional
Business

Domain / Few
Updates

IoT and real-
time systems /

Frequent
Updates

Simple
Domain /
Resource
Intensive

Complicated
Domain /
Frequent
Updates

Design Principles

DESIGN FOR SELF
HEALING

In a distributed system, failures
happen. Design your application
to be self healing when failures
occur.

MAKE EVERYTHING
REDUNDANT

Build redundancy into your
application, to avoid having
single points of failure.

MINIMIZE
DEPENDENICES

Minimize dependencies between
application services to achieve
scalability.

DESIGN TO SCALE
OUT

Design your application so that it
can scale horizontally, adding or
removing new instances as
demand requires.

PARTITION
AROUND LIMITS

Use partitioning to work around
database, network, and compute
limits.

DESIGN FOR
OPERATIONS

Design your application so that
the operations team has the
tools they need.

USE MANAGED
SERVICES

When possible, use platform as a
service (PaaS) rather than
infrastructure as a service (IaaS).

USE THE BEST DATA
STORE FOR THE JOB

Pick the storage technology that
is the best fit for your data and
how it will be used.

DESIGN FOR
EVOLUTION

All successful applications
change over time. An
evolutionary design is key for
continuous innovation.

BUILD FOR THE NEEDS
OF THE BUSINESS

Every design decision must be
justified by a business
requirement.

Best Practices

Scalability

Scalability is the ability of a system to handle
increased load. There are two main ways that
an application can scale. Vertical scaling
(scaling up) means increasing the capacity of a
resource, for example by using a larger VM size.
Horizontal scaling (scaling out) is adding new
instances of a resource, such as VMs or
database replicas.

The need to vertically scale signifies a problem.

Availability

Availability is the proportion of time that the
system is functional and working. It is usually
measured as a percentage of uptime.
Application errors, infrastructure problems, and
system load can all reduce availability.

SLA is a combined effort of the cloud provider
and the application architecture

Resiliency

Resiliency is the ability of the system to recover
from failures and continue to function. The goal
of resiliency is to return the application to a fully
functioning state after a failure occurs.
Resiliency is closely related to availability.

A system with poor availability has a problem with
resiliency

Management
and DevOps

Deployments must be reliable and predictable.

They should be automated to reduce the

chance of human error. Monitoring and

diagnostics are crucial.

Failed deploys usually are a symptom of a problem
with your DevOps

Security

You must think about security throughout the
entire lifecycle of an application, from design
and implementation to deployment and
operations. The platform should provide
protections against a variety of threats, but you
still need to build security into your application
and into your DevOps processes.

Don’t wait to start thinking about security until
after your first breech.

Cloud Design Patterns

Design Patterns

Anti-Corruption Layer

Implement a façade or adapter layer between a
modern application and a legacy system

Design Patterns

Backends for Frontends

Create separate backend services to be consumed
by specific frontend applications or interfaces.

Design Patterns

Circuit Breaker

Handle faults that might take a variable amount of
time to fix when connecting to a remote service or
resource.

Design Patterns

Claim Check

Split a large message into a claim check and a
payload to avoid overwhelming a message bus.

Design Patterns

Competing Consumers

Enable multiple concurrent consumers to process
messages received on the same messaging
channel.

Design Patterns

Federated Identity

Delegate authentication to an external identity
provider.

Design Patterns

Publisher/Subscriber

Enable an application to announce events to
multiple interested consumers asynchronously,
without coupling the senders to the receivers.

Design Patterns

Strangler

Incrementally migrate a legacy system by gradually
replacing specific pieces of functionality with new
applications and services.

Antipatterns

Busy Database

PROBLEM

Database Code execution, such as stored
procedures and triggers overused, putting
excessive load on the database server.

DETECTION

Monitor the volume of database activity,
compare it to the usage of the other tiers.

SOLUTION

Refactor processing to other application
tiers, limiting your database to data access
operations..

PROBLEM

Long synchronous tasks or excessive
background threads can cause decreased
response times

DETECTION

High latency on front end tasks and server
failures including 500 or 503 errors.

SOLUTION

Make all front end tasks asynchronous and
move resource intensive tasks to isolated
compute.

Busy Front End

Chatty I/O

PROBLEM

A high quantity of network calls and other
I/O operations like disk operations.

DETECTION

End users report extended response times
or failures caused by timeouts, due to
resource contention.

SOLUTION

Reduce the quantity of I/O requests by
batching data into larger requests.

PROBLEM

Application retrieves lots more data than it
needs which often gets discarded.
Improper use of ORM tools to filter data
retrieval in memory.

DETECTION

High latency and data store contention,
Long running queries are identified.

SOLUTION

Fetch only the data that you need.
Optimize ORM based requests to filter data
at the database server not in memory.

Extraneous
Fetching

Improper
Instantiation

PROBLEM

Using the wrong instantiation lifetime for
classes, Not using a Singleton pattern
where appropriate.

DETECTION

Exceptions related to exhaustion of
resources, increased memory usage and
garbage collection.

SOLUTION

Wrap classes in thread safe singleton’s
when they are safe for reuse. Use
resource pooling when appropriate.

PROBLEM

Putting all of an applications data into a
single data store, that may lead to
resource contention or be a poor fit for
some of the data.

DETECTION

Sudden dramatic slow downs that lead to
eventual failures.

SOLUTION

Separate data according to use aligned
with how the data is used.

Monolithic
Persistence

No Caching

PROBLEM

Repeatedly fetching the same information
from a resource that is expensive.
Repeatedly constructing the same calls to
a remote service.

DETECTION

Exceptions related to exhaustion of
resources, increased memory usage and
garbage collection.

SOLUTION

Reads should check a cache then retrieve
the data if it is not cached.

www.cameronvetter.com

Any Questions?

@poshporcupine Linkedin.com/in/cameronvetter

