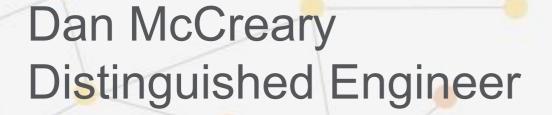
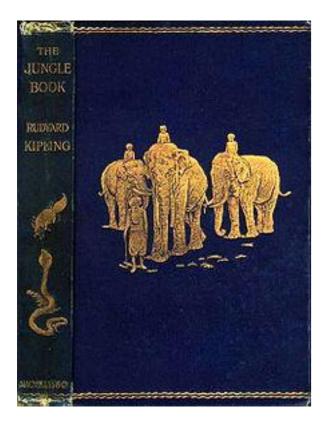
Graph Embeddings MACC Conference November 5th, 2020

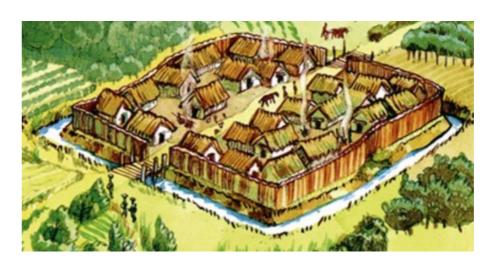


OPTUM[®] Advanced Technology Collaborative

Storytelling – The Setting



The Jungle Book by Rudyard Kipling



Walled Village

Mowgli

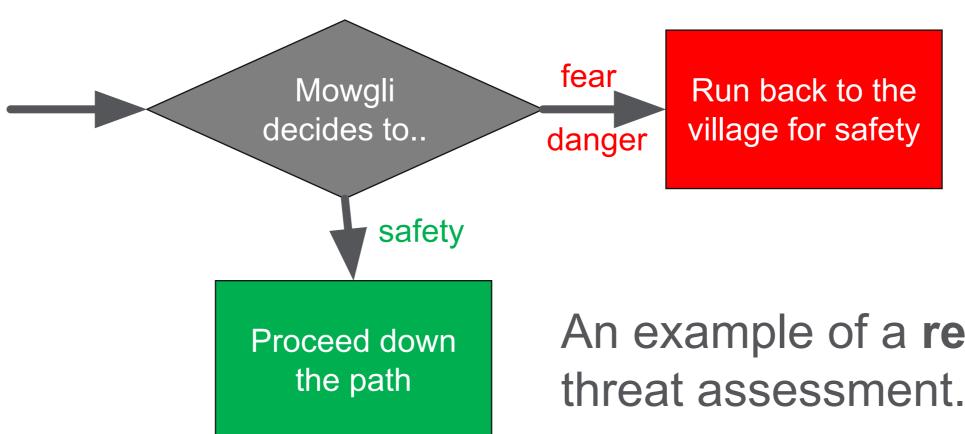
Mowgli's Kitten

Path Near Village

While Walking Down the Path...

Mowgli sees a ...

...which is very similar to Mowgli's Kitten



Think Parallel Processing

An example of a **real-time** existential

Acme E-Commerce Inc.

A shopper is looking for a baby shower gift

Your product **recommendation** engines suggests this lovely flame thrower!

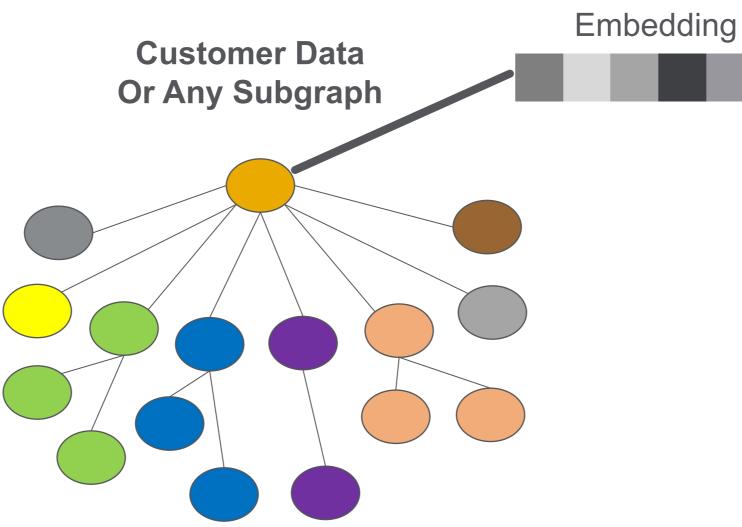
Real-time **similarity** is an existential threat for companies that are not recommending the right products!

Agenda

- 1. What are graph **embeddings**?
- 2. What do we mean by **real-time**?
- 3. What is **Serial** vs. **Parallel** computation?
- 4. What do we mean by "similar"?
- 5. How do we **use** embeddings in applications?
- 6. How do we create and maintain embeddings?
- 7. Why are graph embeddings **universal**?
- 8. How can systems **integrate** them?

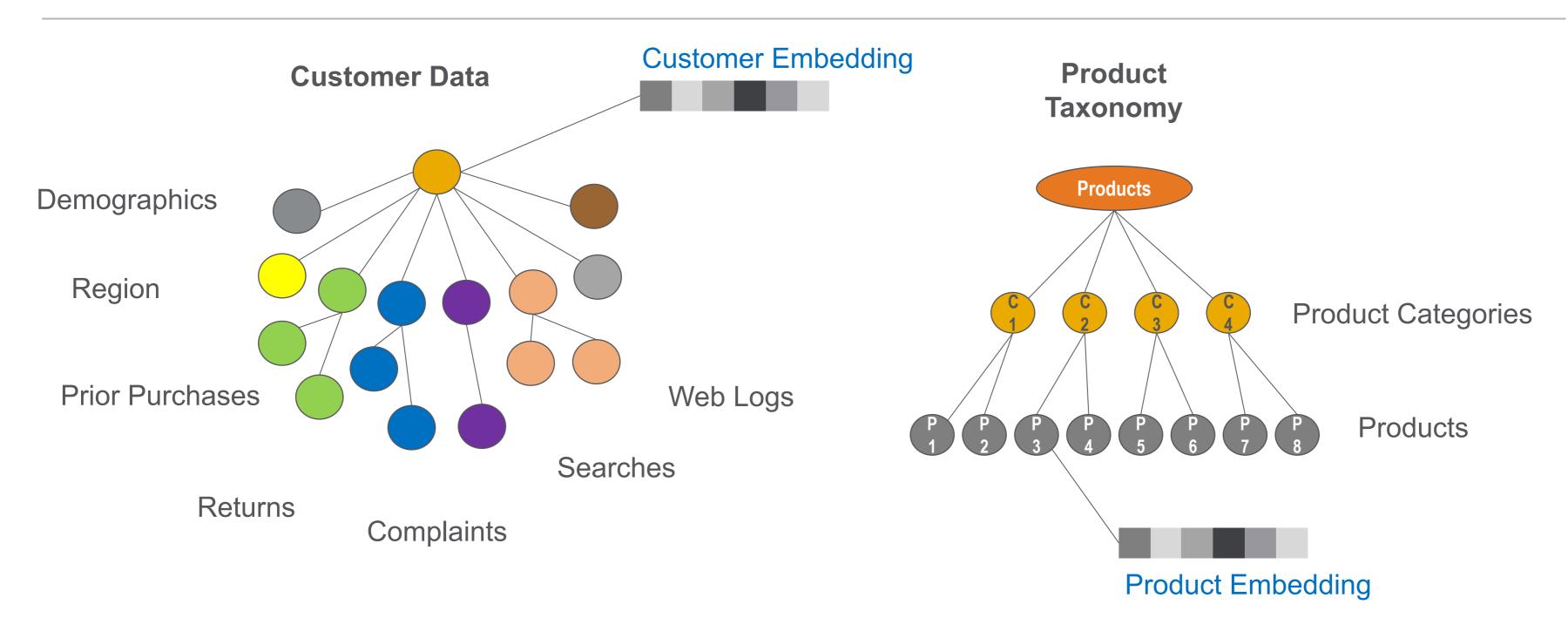
5

What is a Graph Embedding?



- A data structure used to create fast similarity calculations
- Usually stored as a fixed-length vector of scalers
- Optimized for fast parallel comparison

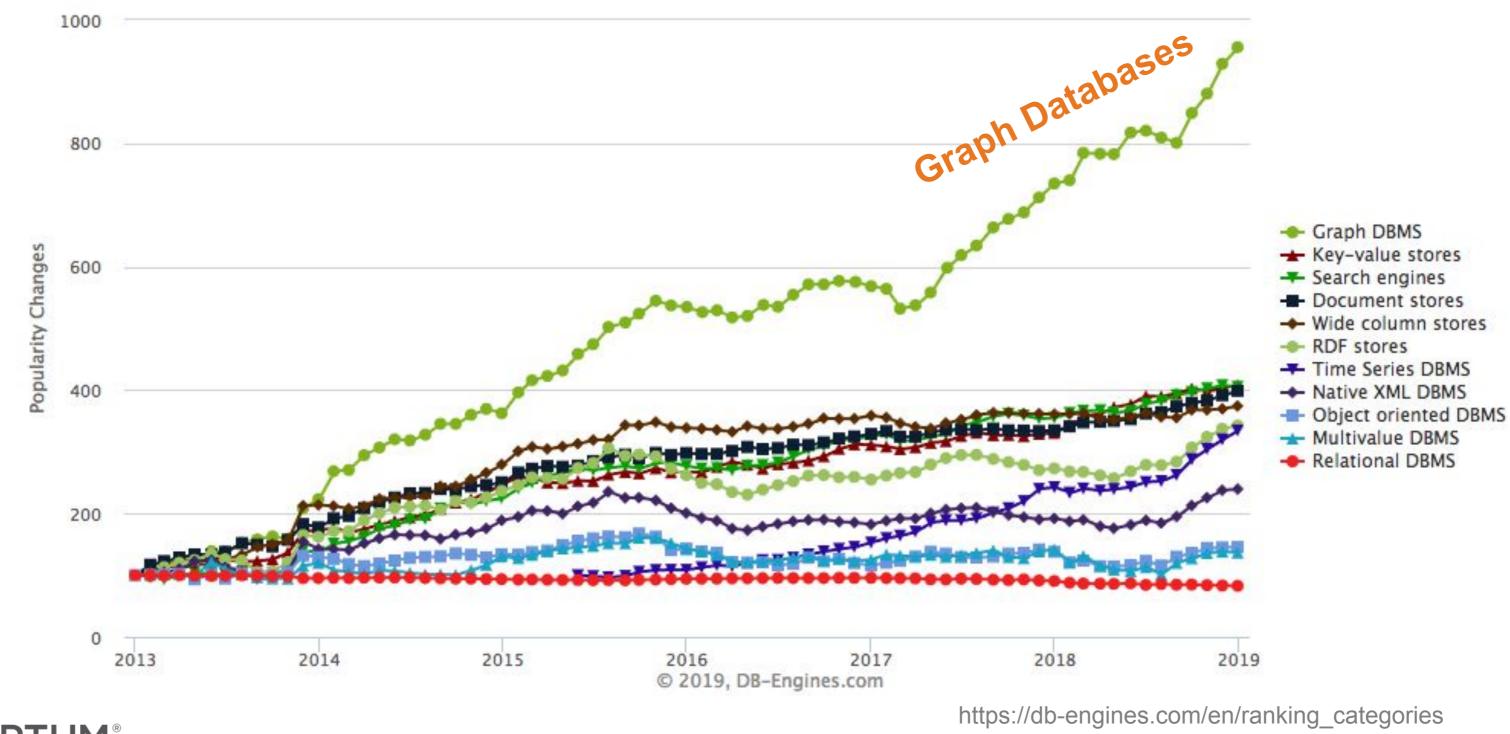
Product Recommendation



Given a **context**, what similar customers buy what similar products?

Graph Databases are HOT!

Complete trend, starting with January 2013



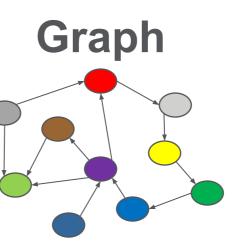
8

Relational vs. Graph

Relational (row store)

- 1. Atomic unit of storage is a **row** of a table and data is appended to a table one row at a time
- 2. All columns within a table must have the same structure and no variations within a table are allowed
- 3. Table structures are **fixed** after design – all rows have the same structure
- Relationship traversal is done via JOINs at runtime using 4. log(N) search's calculated at query time
- 5. Difficult to distribute over a cluster of 100+ nodes

- 2.
- 3.
- 4.
- 5.



Atomic unit of storage are **nodes** and **edges**

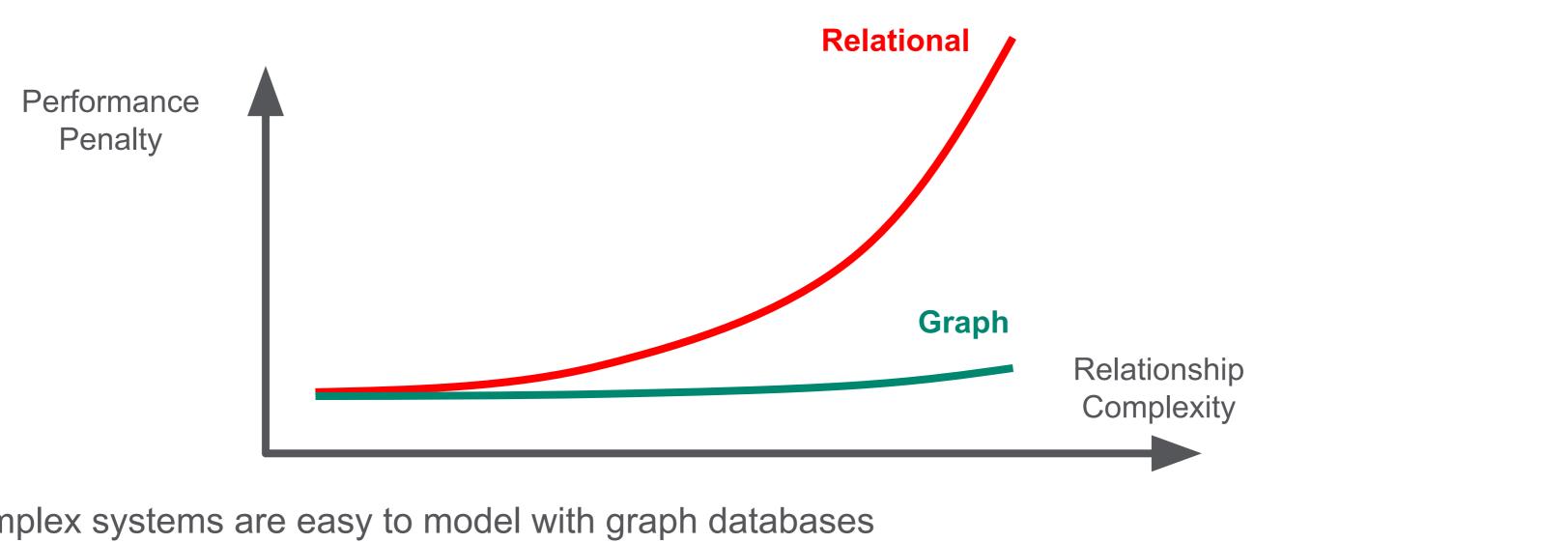
Each node and edge may have independent properties that are determined at run time (schema agnostic)

Joins between nodes and edges are computed at **load** time and are stored as memory pointers

Relationships traversal is done using pointer hopping each core can evaluate 2M hops per second

Distributed graph products are new

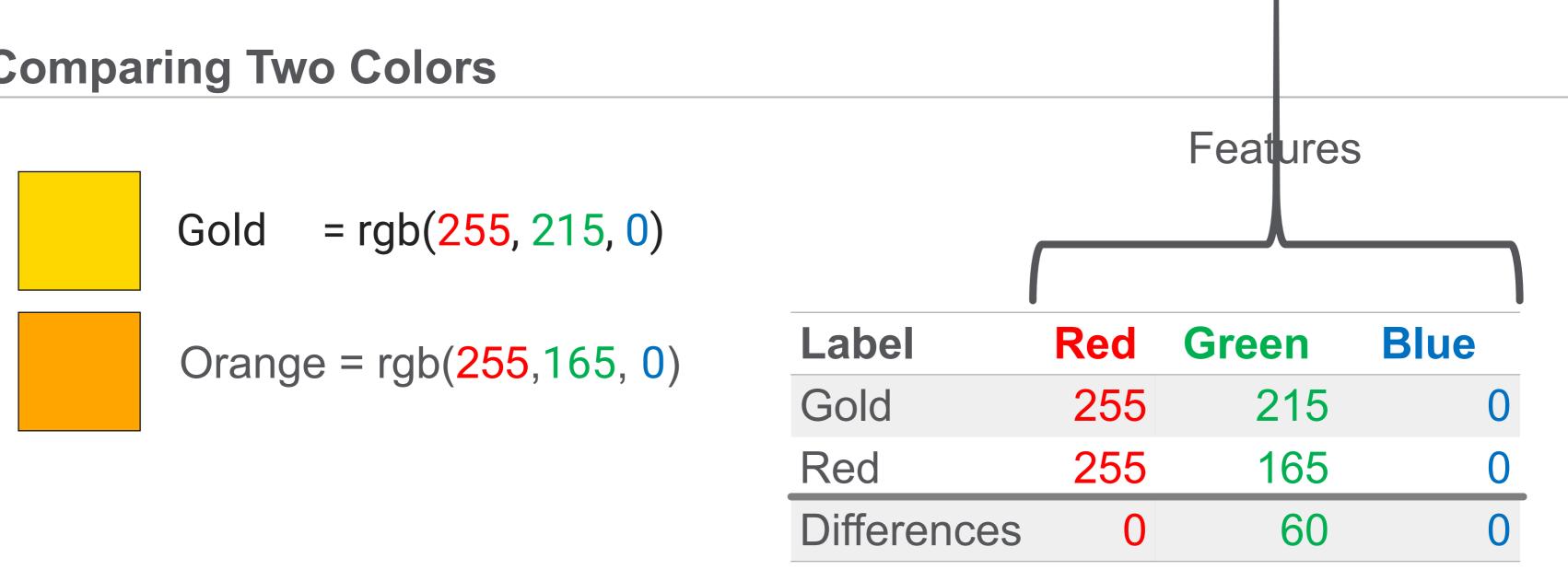
Low Complexity Penalty



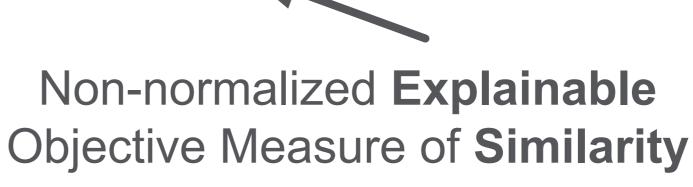
- •Complex systems are easy to model with graph databases
- •The world is complex
- •Highly normalize models are a precise representations of the world

We still need to compare things, even if they are complex and have many relationships

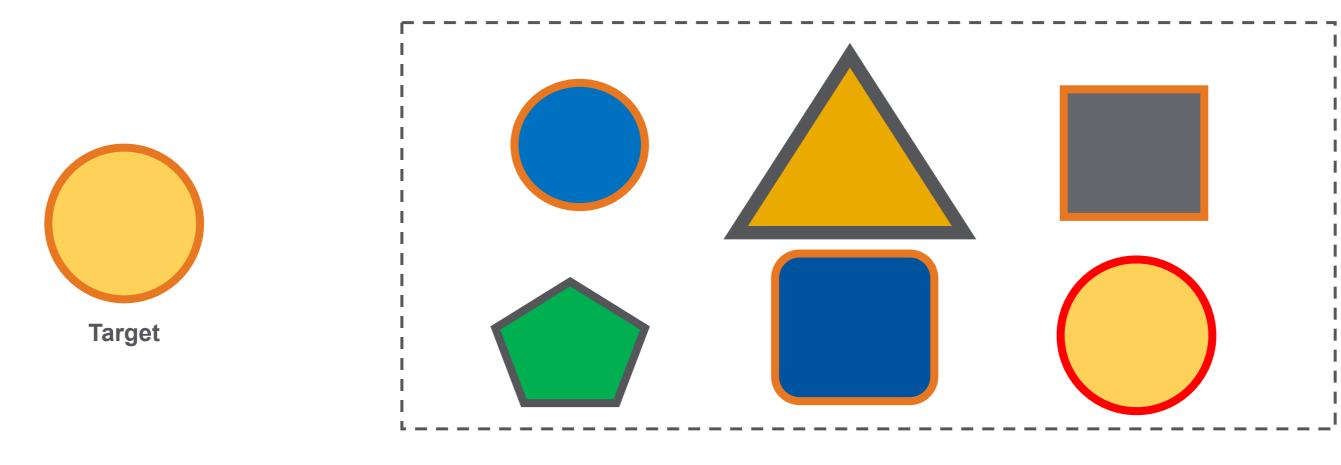
Comparing Two Colors



Differences => 0 + 60 + 0 = 60Sum



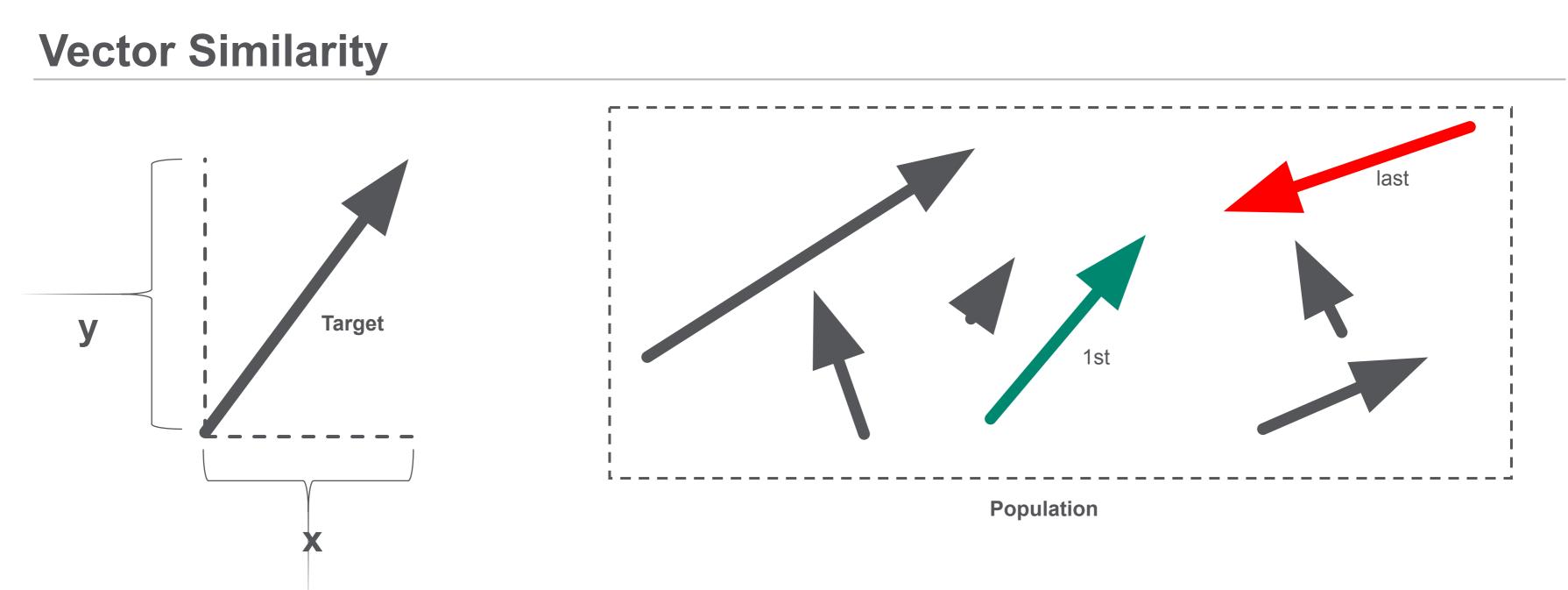
Property-based Similarity Example



Population

•Used to find the most similar items in a graph by comparing properties and structure

- •Ideal when you a can compare individual features of an item numerically
- •Algorithms return a ranking of similarity between a target and a population based on the counts and weights of properties that are similar

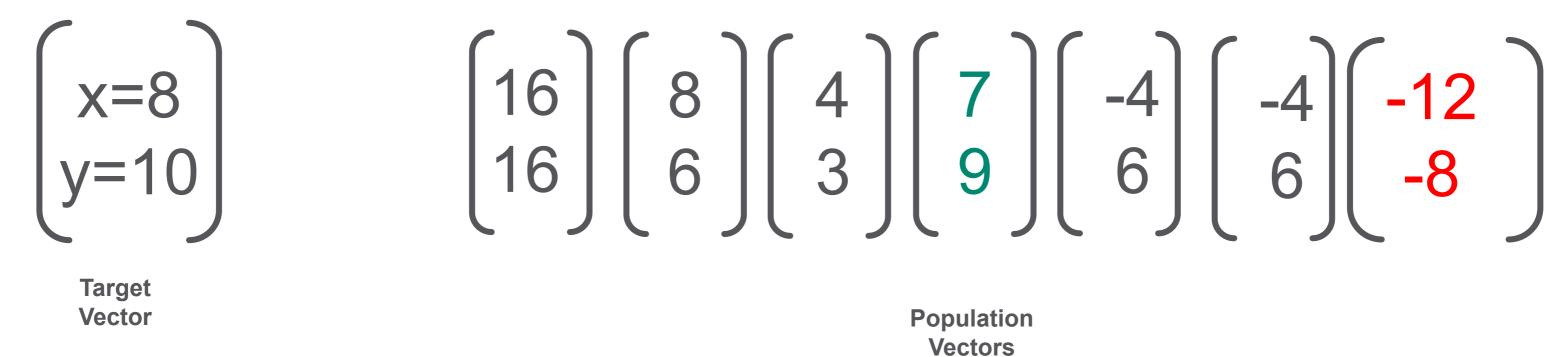


•Vectors are **similar** in two-dimensional space if they have the same length and direction

 Compare all the "x" lengths and the "y" lengths and rank by the sum of the totals of the difference

the same length and direction y the sum of the totals of the

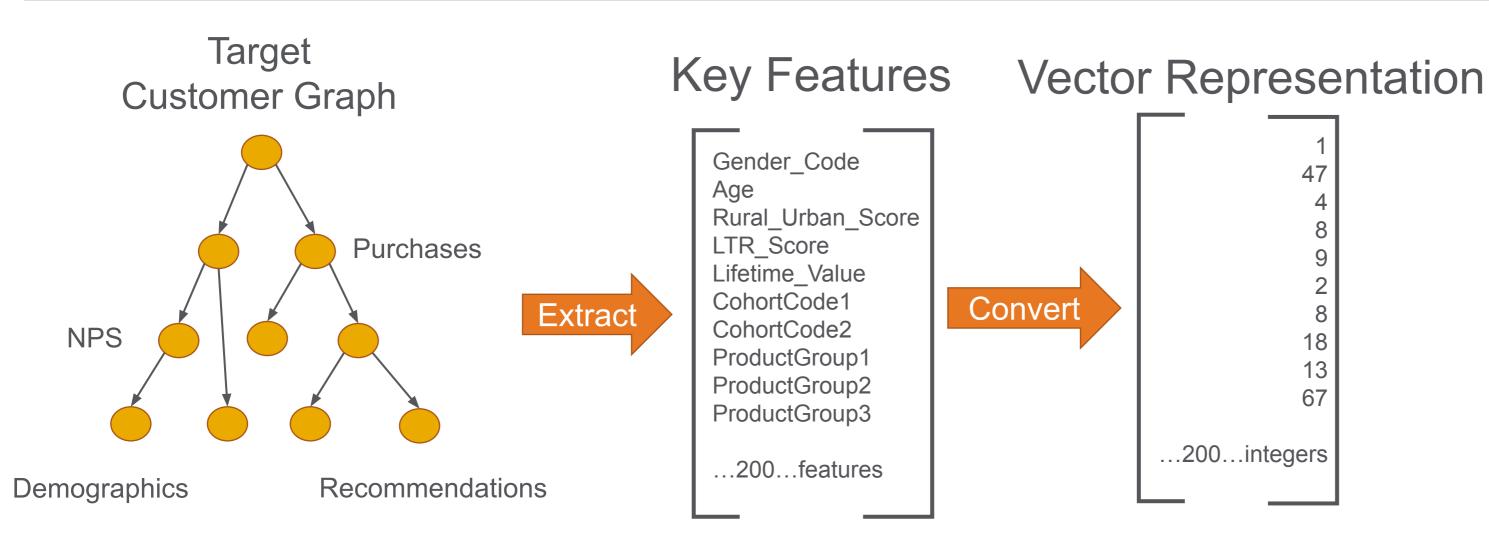
Vector Representation



•Each item can be represented by a series of "feature" vectors

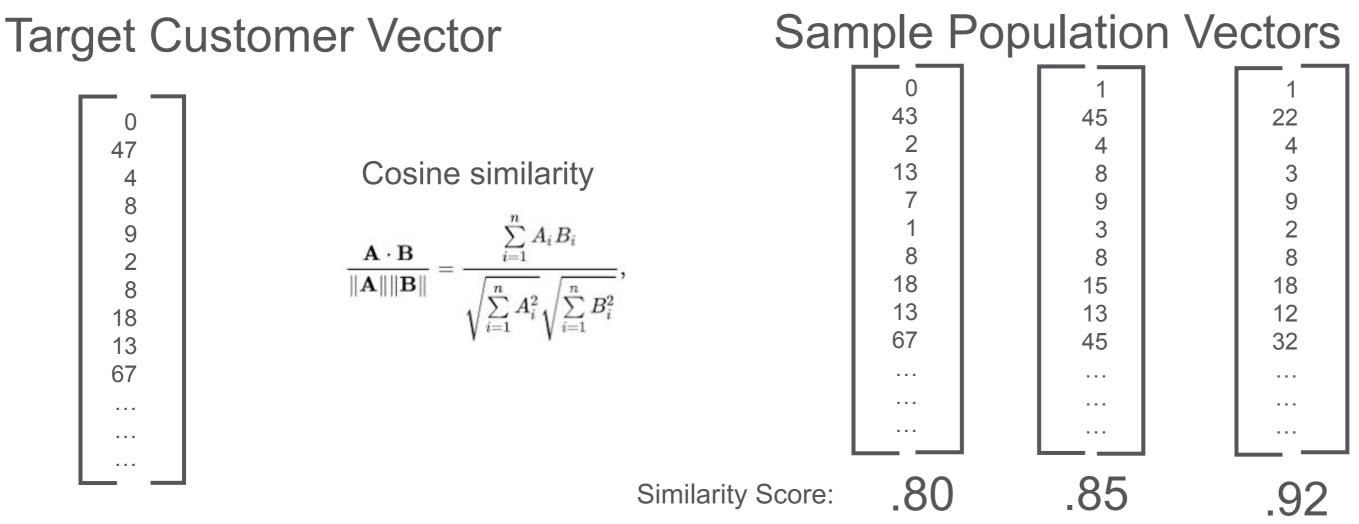
•The numbers are scalers

Graph to Vector



Features should represent both the **properties** and **structure** of your customer's graph

Example: Customer Similarity



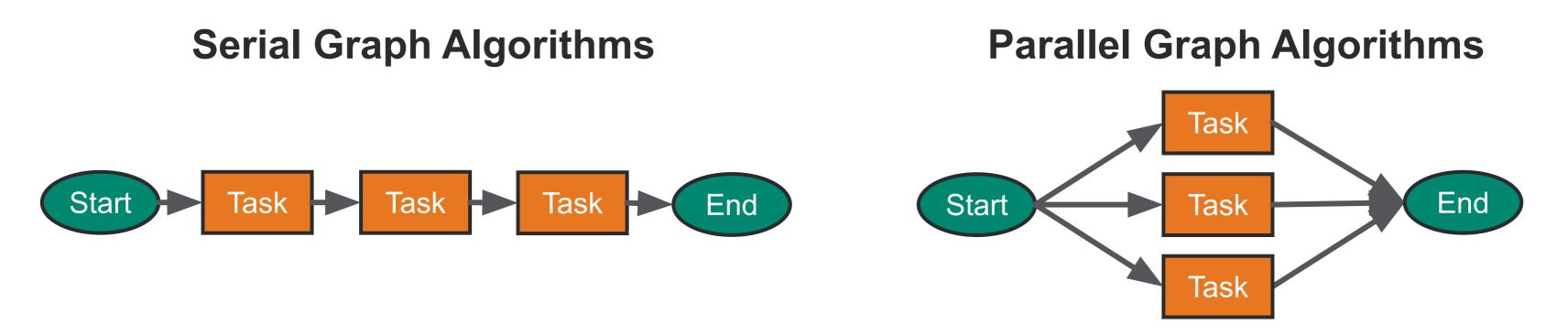
- Graph **Similarity** algorithms allows graph databases to quickly compare current items with many other items
- For any given customer, we can use a fast, in-memory similarity algorithm to compare the key features of any patients to a larger population
- Cohort codes can be **pre-calculated** to quickly narrow the sample population to a smaller group
- This calculation is considered a "embarrassingly parallel" query and could be accelerated by adding more nodes to a cluster
- Specialized graph hardware such as GPUs and FPGAs can dramatically accelerate these calculations

...various phenomena that arise when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience.

https://en.wikipedia.org/wiki/Curse_of_dimensionality

https://en.wikipedia.org/wiki/Dimensionality reduction

Serial vs. Parallel Graph Algorithms

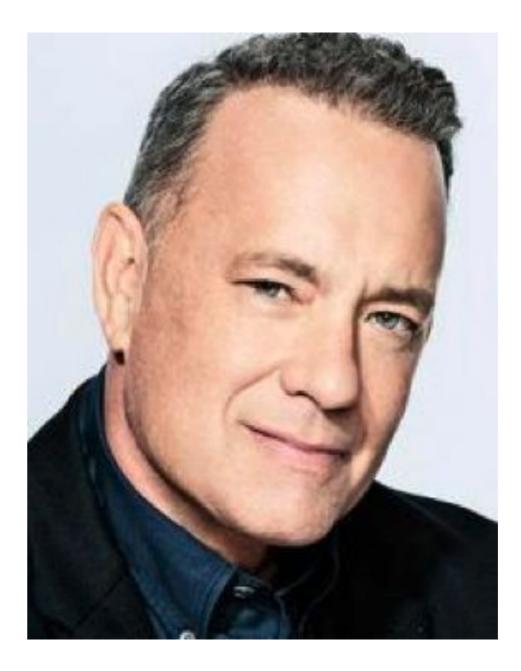


- One task cannot begin before the prior task is complete
- Many tasks can be done independently
- •Task order in not relevent

- Task order is important
 - Serial Algorithms cannot easily be optimized on FPGAs
- •Tasks can usually be done faster on FPGAs

Does the Human Brain do Serial or Parallel Computation?

- •The following slide photos of two people
- •One is a famous actor
- The other is a synthetically generated image of a person (generated by a GAN)
- •Shout out "Left" or "Right" as soon as you can tell which is the famous actor



What just happened

- The visual cortex received the images as electrical signals from your eyes 1.
- 2. Your brain identified key **features** of each face from the images - in **parallel**
- 3. Your brain sent these features as electrical signals to your memories of people's faces
- Your brain compared these features to every memory you have of a person's face in parallel 4.
- 5. Your brain sent their recognition scores to a control center of your brain
- Your brain's speech center vocalized the word "right" in series 6.

Answer: The human brain, comprised of around 84B neurons, does **both** parallel and series calculations

Two Key Questions:

- How does the brain know to pay **attention** to specific features of a face? 1.
- What portions of real-time recommendation systems can be done cost 2. effectively in **parallel** at low cost?

The Neighboring Village Problem

Mowgli

Sees a new person on the path

•Is this person from my village or a nearby village?

•How similar is this face to someone I know in my village?

•Is this person a threat?

My Village

Other Village

The Product Recommendation Challenge

- A customer comes to your web site 1.
- You have information on their prior purchases, and they view new products 2.
- How **quickly** can you generate a real-time recommendation based on 10 3. products and 1 million product reviews?
- How much **detail** can you consider and return the best match in 100 4. milliseconds?

How quickly can we compare a given customer and their purchases to 1 million other customers and their purchases?

What comparison tasks can be done in parallel?

- •47 percent of visitors **expect** a website to load in less than 2 seconds
- •40 percent of visitors will leave the website if the loading process takes more than 3 seconds.

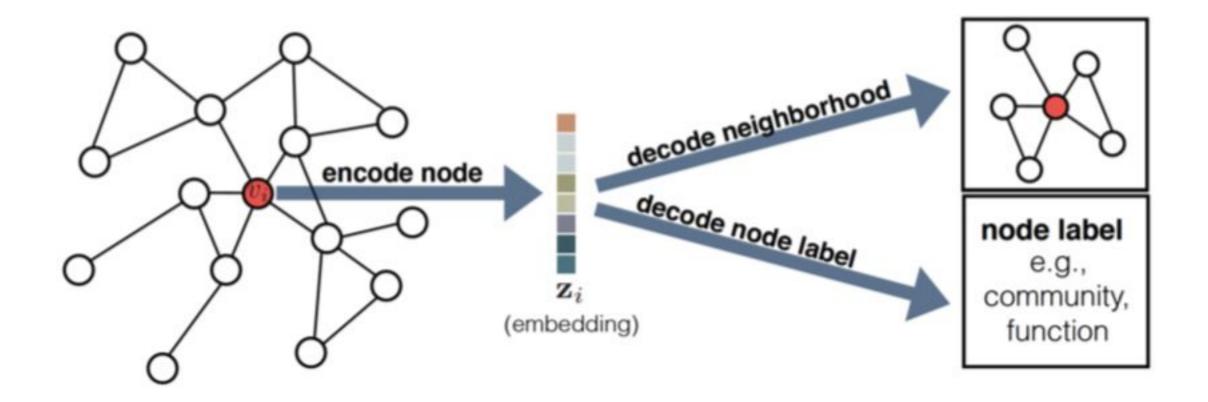
According to Kissmetrics http://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/

Recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings.

The central problem in machine learning on graphs is finding a way to incorporate information about the structure of the graph into the machine learning model.

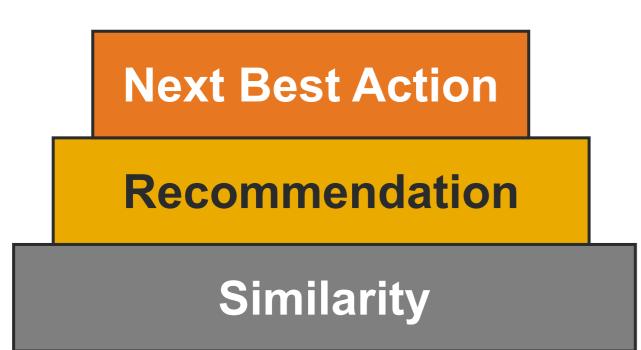
From Representation Learning on Graphs: Methods and Applications by Hamilton et. El.

Example of Graph Embedding – Encode and Decode



From Representation Learning on Graphs: Methods and Applications by Hamilton et. El.

Why Are Similarity Calculations Critical?

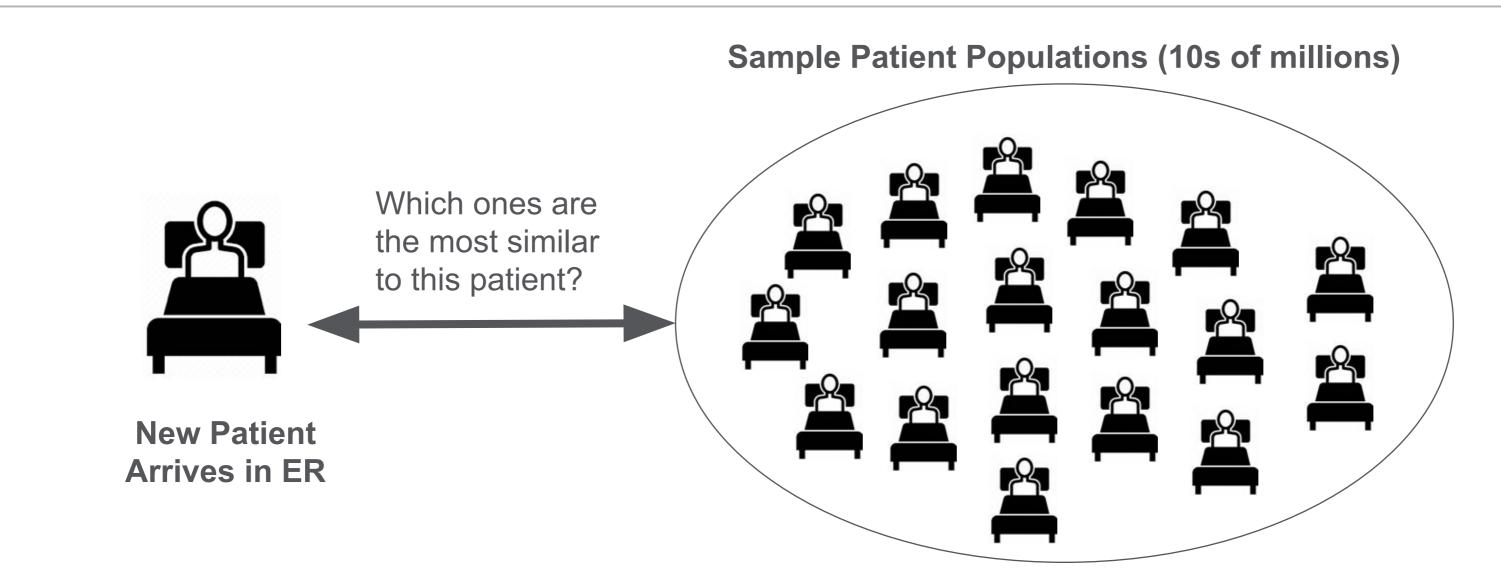


- Similarity is at the foundation of recommendation engines
- Recommendation engines power sites like:
- Google recommend a document
- NetFlix[™] recommend a movie
- Amazon recommend a product
- Pintrest[™] recommend an interest
- Healthcare recommend a care path

including recent searches

- Recommendations must take into account many factors
- To be useful in interactive web sites we set a goal of response times of under 200 milliseconds

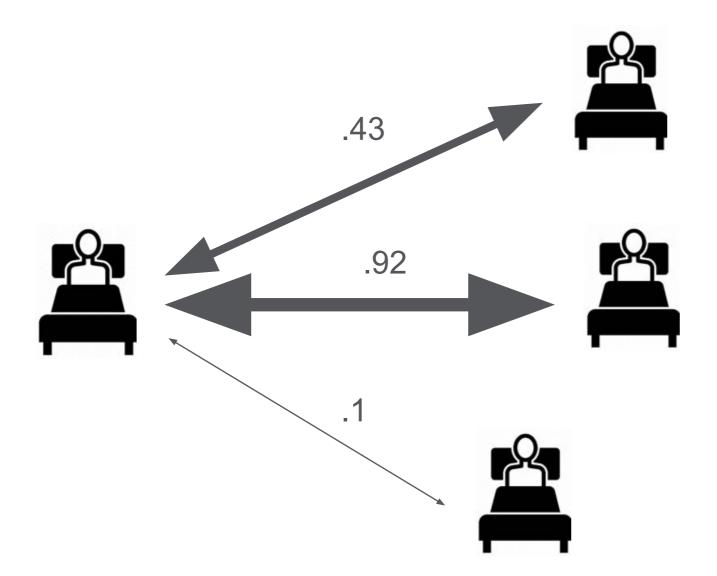
Real-Time Patient Similarity



- Given a new patient that arrives a clinical setting, how can we quickly find the most similar patients?
- Assumption: we have 10M clinical records of our population of 235 million members
- Can we find the **100 most similar patients in under 200 milliseconds**?

ickly find the most similar patients? 235 million members **conds**?

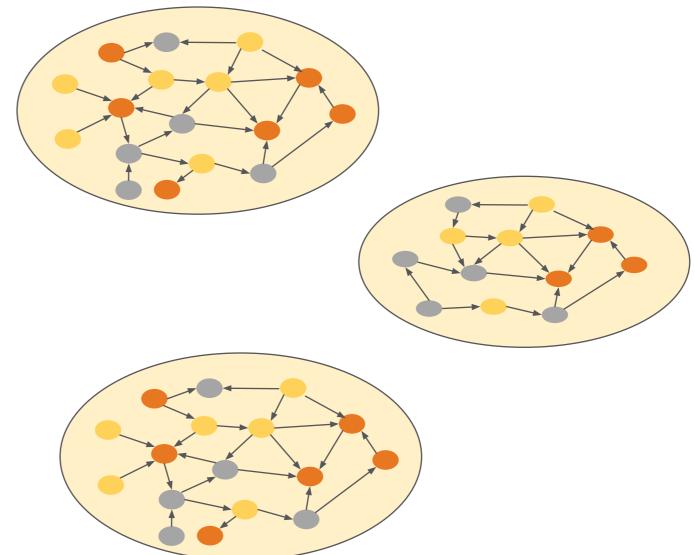
Similarity Score – A scaled measure of "alikeness" for a context

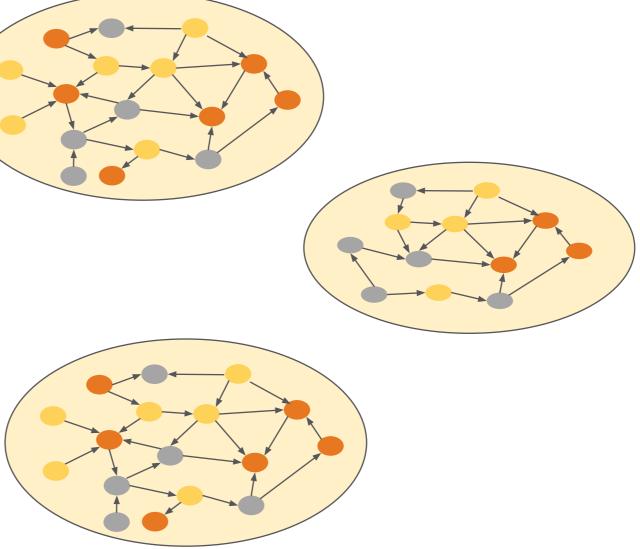


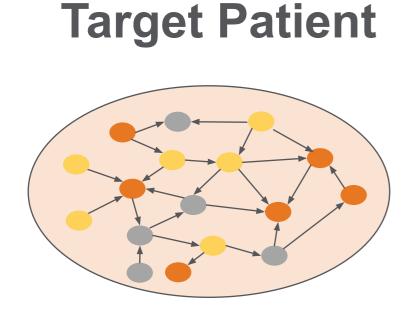
- A single **scaled** dimension of comparison for a given setting or context
- Comparing a patient to itself would have a similarity score of 1.0 •
- Patients that have few common characteristics would have a score of 0.1

Graph Representation of Patients – Includes Structure

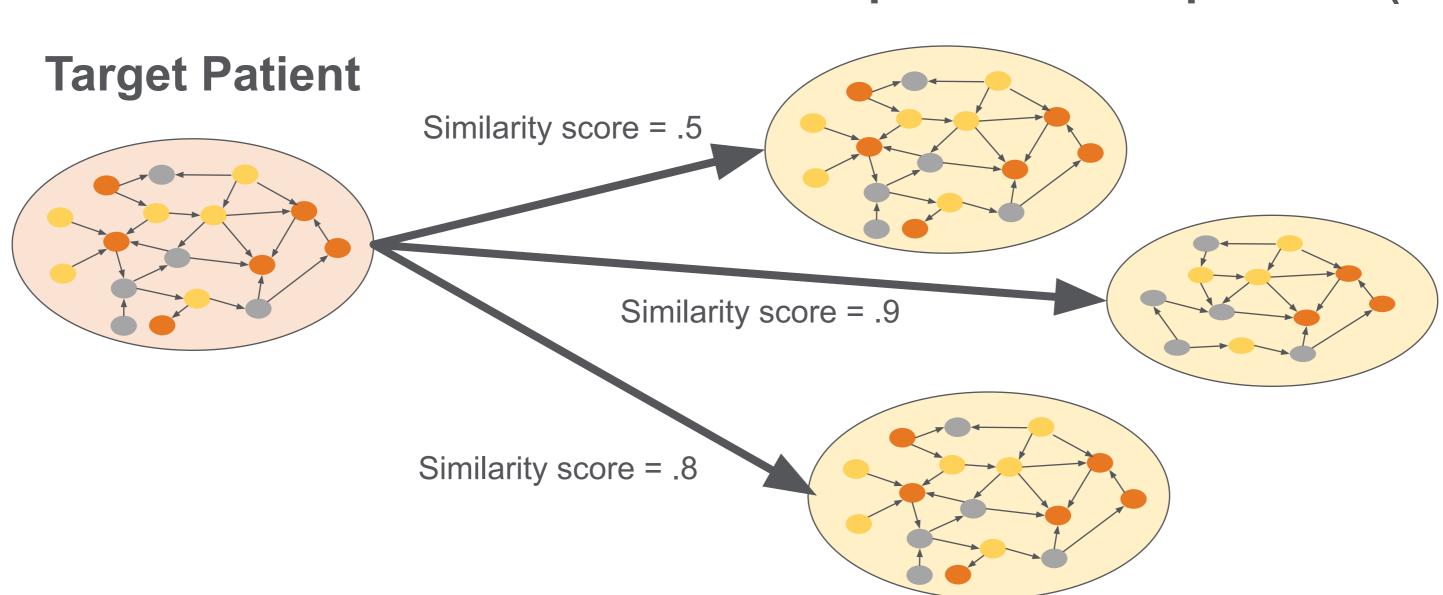
Sample Patient Population (10M)







Graph Representation of Patients – Includes Structure



How can I quickly compare these graphs and find the most similar patients?

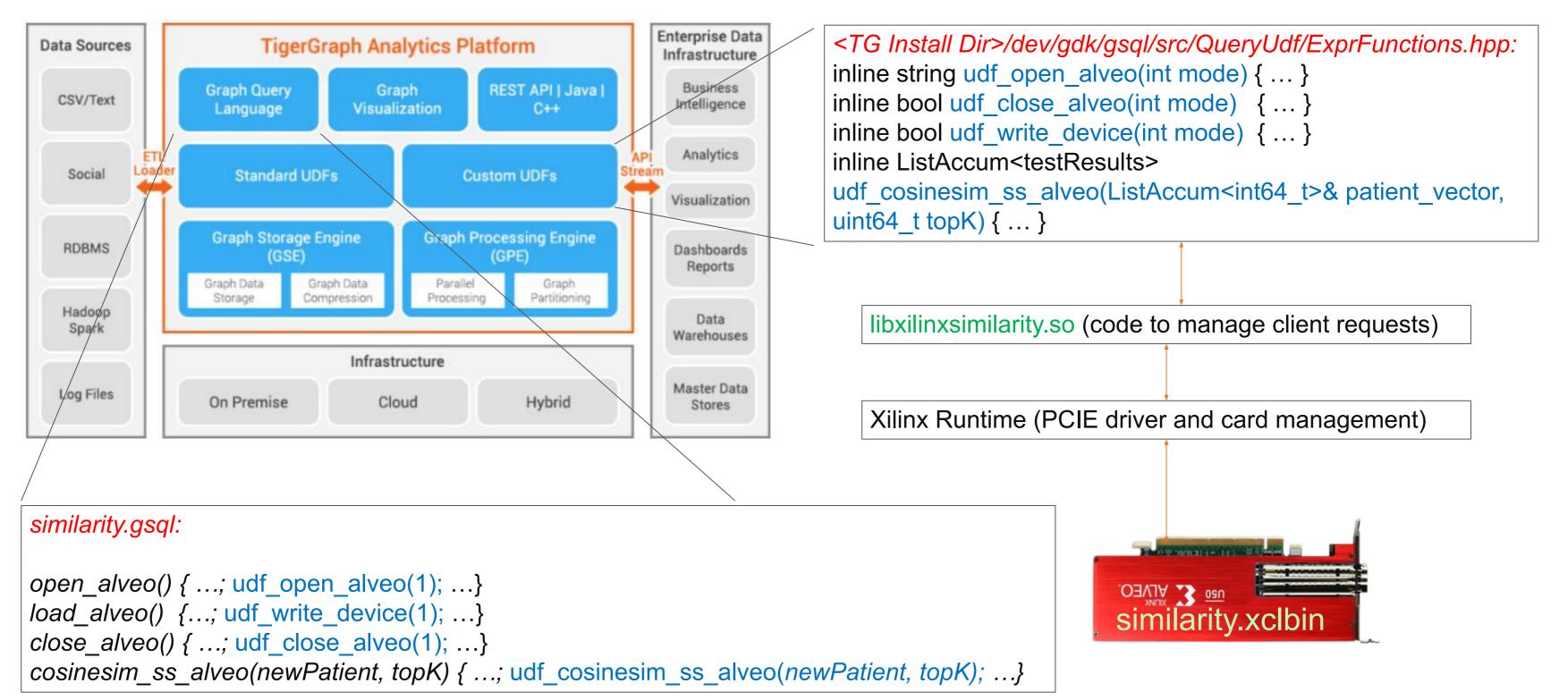
Sample Patient Population (10M)

Xilinx FPGA Implementation

Kumar Deepak Distinguished Engineer Xilinx

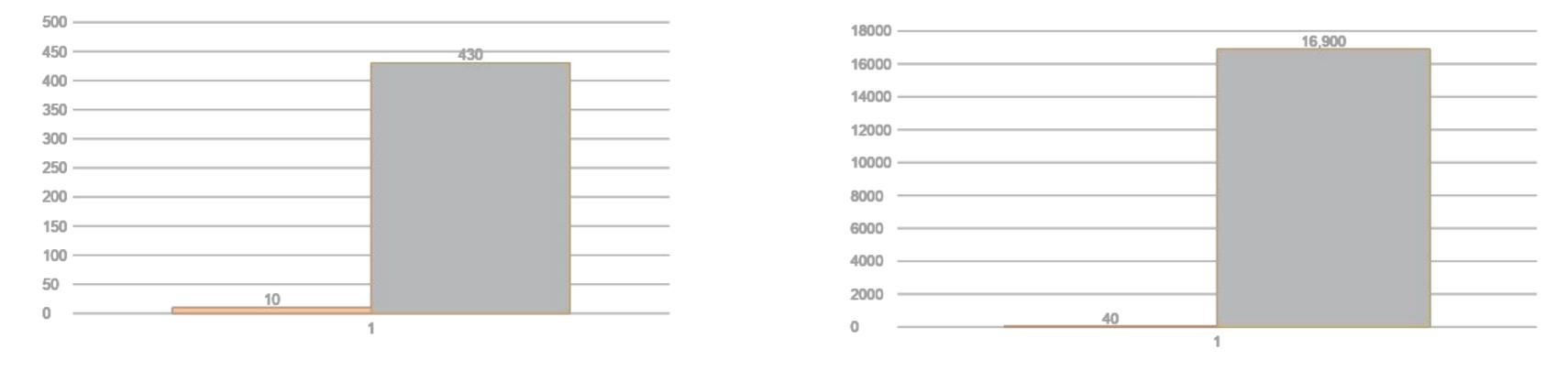
- •The more items to compare, the longer it takes to fine the top 100 most similar items
- •FPGA = Field Programable Gate Array
- •30B transistors that can be rewired in 2 seconds using "C" langauge
- Ideal for parallel computation
- Benchmarked FPGA implementation of cosine similarity
- Open-source versions coming soon

Integration with TigerGraph



Time (milli-seconds) to get top 100 similar patients

40x faster than CPU



Alveo U50 CPU

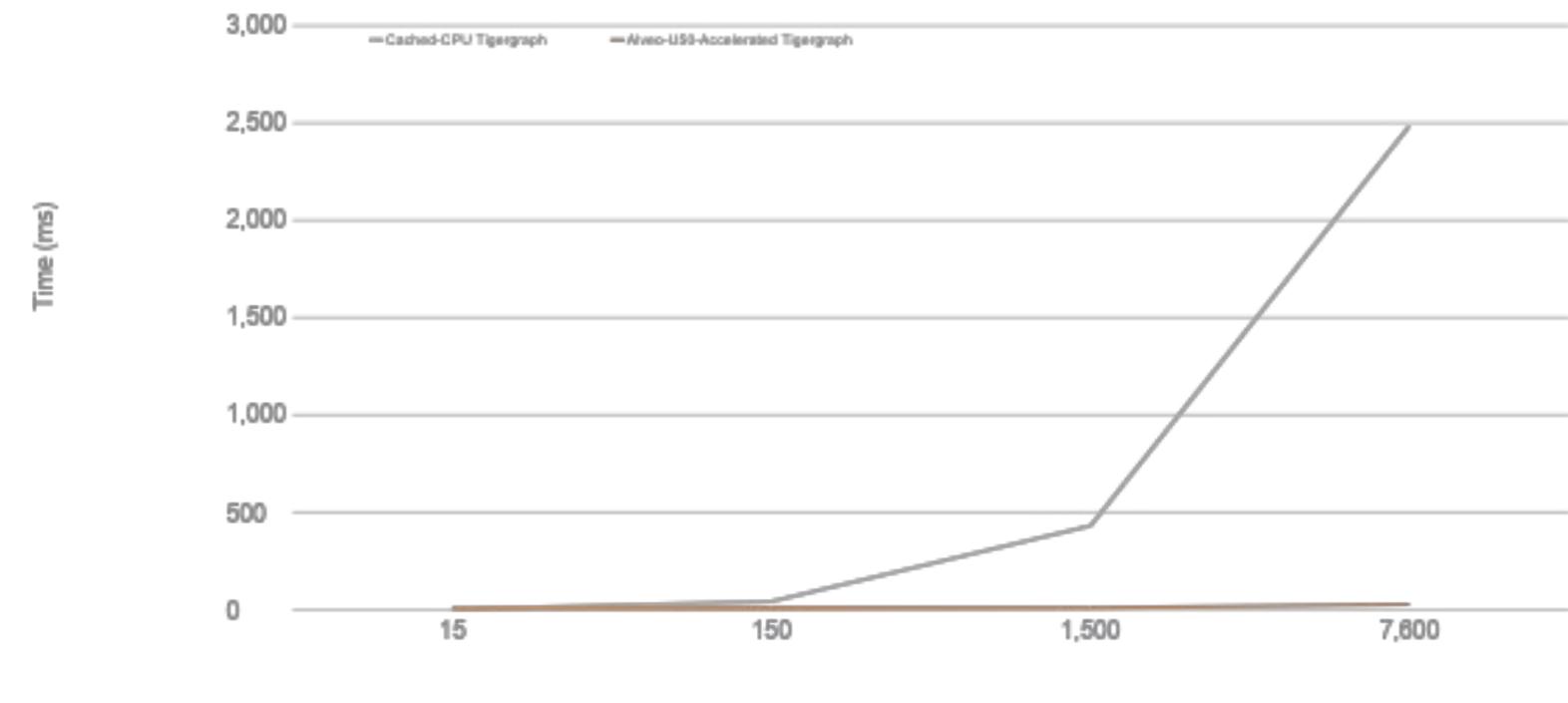
Using one Alveo U50

400x faster than CPU

Alveo U50 CPU

Using 5 Alveo U50's

Scaling with number of patients



Number of patients (K)

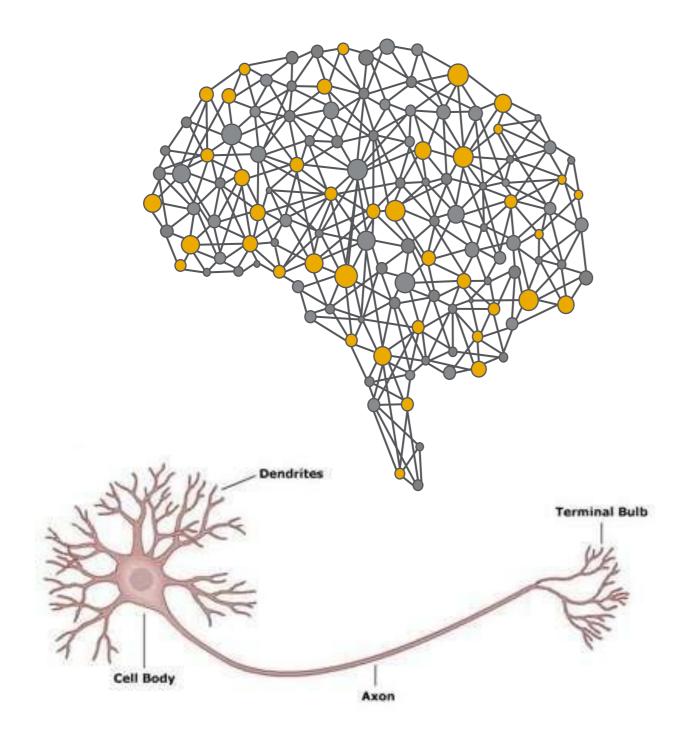
Three General REST Services to Support Similarity

•Bulk Upload Data: input - millions of vectors; output – success/failure code

•**Update Vector:** input - vertex ID, 198 integers; output – success/failure code

•Find Similar: input - vertex ID, 198 integers; output – 100 vertex IDs (64 bits)

Brain Metaphors and Analogies



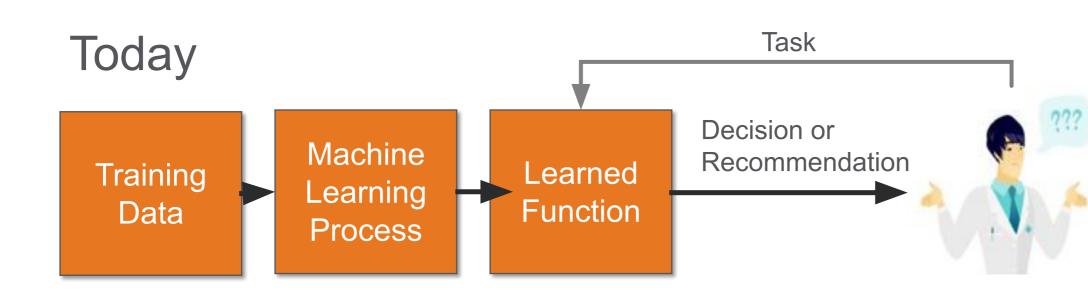
- •Use cautiously
- •The brain has 82B neurons
- •Each neuron has 10,000 connections (axons)
- Most axons are on "standby" for future learning
- •Enterprise graphs have billions of vertices but typically have a **degree** of 5-6

Analogies

- A plane is like a bird
- A submarine is like a fish
- A graph is like a brain

The Deep Learning Bartender

Explainable AI Models Leverage Graphs



Task

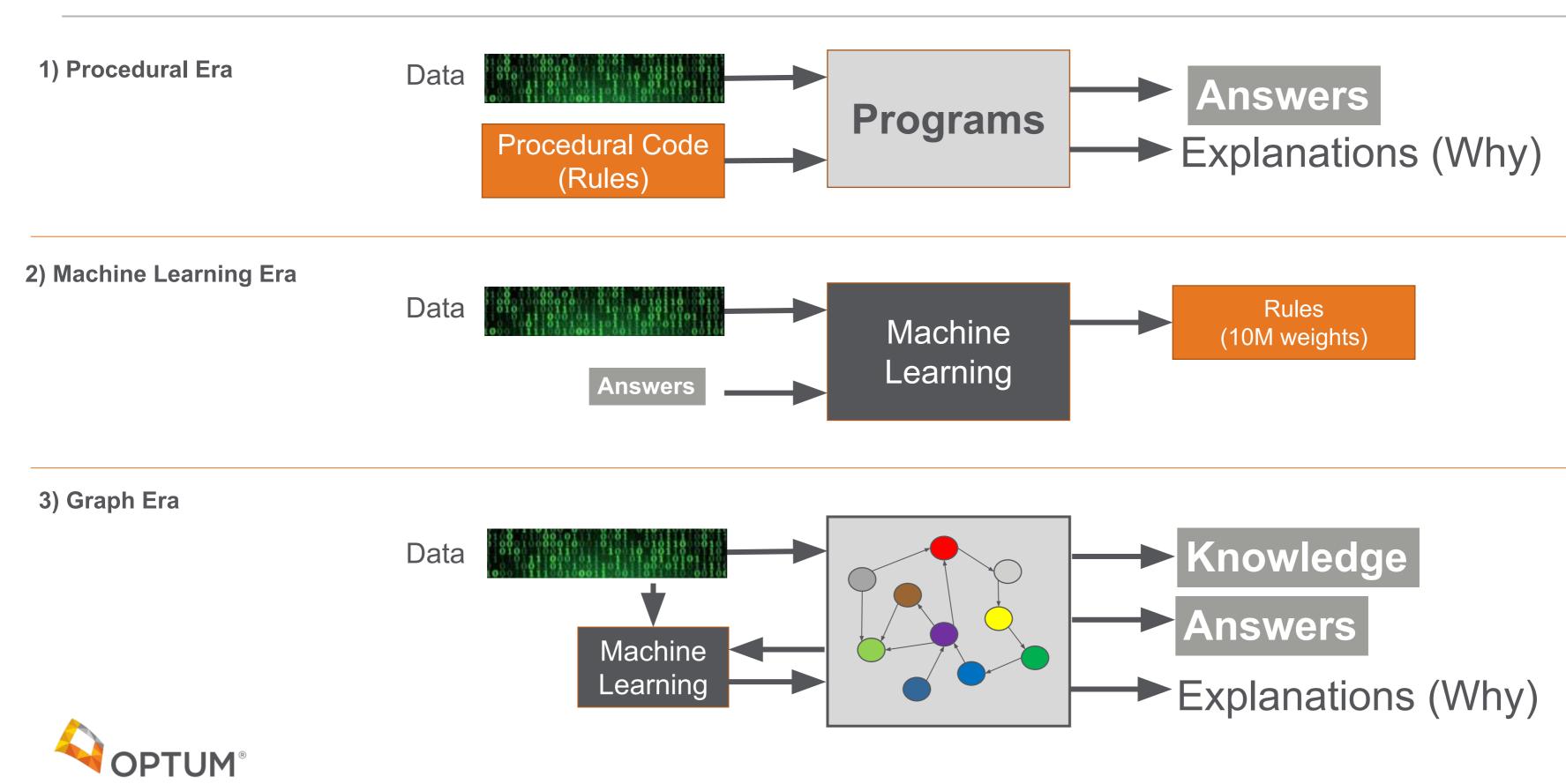
Explainable AI New Explanation H Machine Training Interface Data Learning Process

Explainable Model

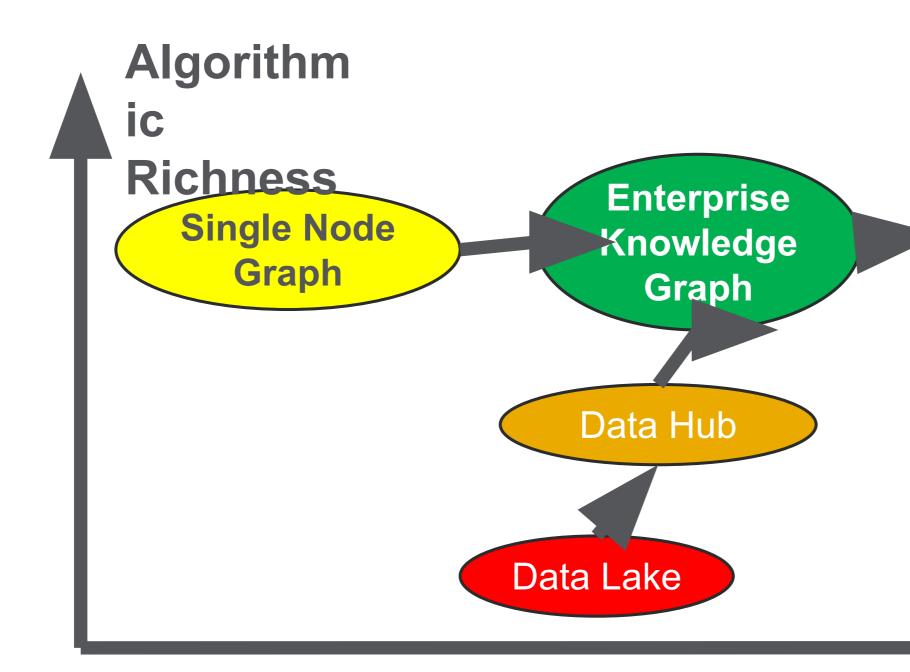
- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How to I correct an error?

- I understand why
- I understand why not
- I know when you succeed
- I know when you fail
- I know when to trust you
- I know why you erred

Three Eras of Computing



Onward to the Hardware Graph!



Related Use Cases

• Recommendation Engines for Ecommerce and Healthcare

• For any person calling in for a recommended provider or senior living facility, can we find similar recommendations in the past?

Document Search

Show similar documents to a search result using document embeddings

Incident Reporting

• When trouble ticket is reported, what are the most similar problems and what were their solutions?

• Errors in Log Files

• When there are are error messages in log files, how can we find similar errors and their solutions?

• Learning Content

• Can we recommend learning content for employees that have similar goals?

Schema Mapping

• Automate the process of creating data transformation maps for new data to existing schemas

Thank you!

Dan.McCreary@optum.com

http://dmccreary.medium.com

🥑 @dmccreary

