
COPYRIGHT 2017 MACCCOPYRIGHT 2017 MACC

MIDWEST ARCHITECTURE COMMUNITY 
COLLABORATION 2020
NOVEMBER 5, 2020

MACC 2020
Microservices Architecture

Practical guide to Microservices and their 
use in the real world



COPYRIGHT 2017 MACC

MACC MISSION

◼ The Midwest Architecture Community Collaboration’s (MACC) purpose is to bring all domains of 
architecture together to share information and techniques of interest to all of us. It is our shared belief that 
through collaboration, we can better understand and promote the significance of architecture to business 
success. 

2



COPYRIGHT 2017 MACC3



COPYRIGHT 2017 MACC

SOA DESIGN AND DEVELOPMENT

◼ Service Oriented Architecture (SOA)

• .NET Remoting
• Data Synchronization 
• WCF and SOAP protocol

• An then there was Roy Fielding…
• invented an architectural style called:

“Representational State Transfer”

• …. Or what we all refer to now as.. the “RESTFul” API

4



COPYRIGHT 2017 MACC

SOA AND DDD

DDD???

• Domain Driven Design

• Middle Tier Development First Approach

• Strong understanding of your business domain

• … Eric Evans Book on DDD

5



COPYRIGHT 2017 MACC

MICROSERVICES & DEVOPS

Microservices Architecture and Design

• Small units of work

• Isolation of components, code

• Automated deployments (CI/CD)

6



COPYRIGHT 2017 MACC

NETFLIX “DEATH STAR” - +700 MICROSERVICES

7



COPYRIGHT 2017 MACC

AMAZON.COM - ???? MICROSERVICES

8



COPYRIGHT 2017 MACC

HISTORY

“You need to know the past…

 …to understand the future” 

~ Dr. Carl Segan

9



COPYRIGHT 2017 MACC

CLIENT / SERVER APPROACH

Connecting clients to backend corporate servers

• Solved out data problem – data is in one place 

• Did not solve our distribution/deployment problem

10



COPYRIGHT 2017 MACC

THE “BOOM” OF THE .COM

◼ Webpages or Web-Resources

• You have everything under the sun – the wild west

• ColdFusion development

• PHP development

• Backend processing

• …. And eventually the “Post Back” development

11



COPYRIGHT 2017 MACC

API DEVELOPMENT

◼ Webpages or Web-Resources

• The idea of a stand alone webpage the served up data

• Browser applications could ingest this data 

12



COPYRIGHT 2017 MACC

EVERYONE LOVES “JAVASCRIPT”

◼ The invention of SPA (Single Page Applications)

• We needed a better User Experience

• DevExpress / Infragistics / Telerik Controls

• Ruby on Rails

• Microsoft’s “Silverlight”… yes, you can breath now

• …. Everyone was struggling to have a better UI

13



COPYRIGHT 2017 MACC

THE MARRIAGE WITH SPA

◼ The invention of Microservices

• Miniature little APIs

• Monolithic Systems are now in place… What do we do?

14



COPYRIGHT 2017 MACC

THE MARRIAGE WITH SPA

◼ The invention of Microservices

• Miniature little APIs

• We can isolate business logic and ultimately business domains

• Monolithic Systems are now in place… What do we do?

15



COPYRIGHT 2017 MACC

MICROSERVICES

Structure / Layout / Design

16



COPYRIGHT 2017 MACC

GOALS – ENTIRE SYSTEM

◼ Overall goals for the entire set of Microservices

• Databases are isolated/separated

• Microservices are isolated/separated

• Different versions can interact with each other (with consumers)

• Quick/Automated deployments

• Consumers can plug and play

17



COPYRIGHT 2017 MACC

OVERALL STRUCTURE

◼ Components – These are your basics

• Microservices

• “Atomic” and “Composite”

• Single/Isolated data storage system (each Microservice)

• API Gateway (front side caching)

• Data Warehouse (backend data movement)

• Messaging System

18



COPYRIGHT 2017 MACC

OVERALL STRUCTURE

19



COPYRIGHT 2017 MACC

OVERALL STRUCTURE

20



COPYRIGHT 2017 MACC

OVERALL STRUCTURE

21



COPYRIGHT 2017 MACC

OVERALL STRUCTURE

22



COPYRIGHT 2017 MACC

GOALS – SINGLE SERVICE

◼ Overall goals with a single Microservice

• Built and checked in – 8 hours flat

• Built / Deployed / Tested in 16 hours flat (to DEV)

• Database/Data-storage - created automatically

• Documentation is automatically created (i.e. Swagger)

23



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Microservice Layout for success

• 3-Tier Architecture

• Fully RESTful (do not deviate)

• URL Versioning (backwards compatible)

• Data storage ORM tool (very helpful)

• Unit tests (automated)

24



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ 3-Tier Architecture

• Presentation Layer (api endpoints)

• Business Layer (all logic here)

• Data Layer (almost fully generated)

25



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Presentation Layer – URL Versioning

26



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Presentation Layer – URL Versioning

27



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Business Layer
◼ All logic resides here

28



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Business Layer – DO NOT EXPOSE DATA ENTITIES!

29



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Data Layer – Automate it!

30



COPYRIGHT 2017 MACC

DEVOPS (DEVELOPMENT & OPERATIONS)

Why is this so important?

31



COPYRIGHT 2017 MACC

DEVOPS

◼ Development/Deployment Operations

• Need to get your code promoted INSTANTLY

• CI/CD – Continuous Integration / Continuous Deployment

• Automated testing and code coverage

32



COPYRIGHT 2017 MACC

DEVOPS

◼ Automated builds…

33



COPYRIGHT 2017 MACC

DEVOPS

◼ “Releasing” code
◼ Pushing code out

34



COPYRIGHT 2017 MACC

DEVOPS

◼ “Releasing” code
◼ Pushing code out

35



COPYRIGHT 2017 MACC

DEVOPS

◼ “Releasing” code
◼ Pushing code out

36



COPYRIGHT 2017 MACC

DEVOPS

◼ Creating components in the cloud automatically

37



COPYRIGHT 2017 MACC

BENEFITS - VS - CONSTRAINTS

38



COPYRIGHT 2017 MACC

BENEFITS

◼ Retiring the monolithic systems

• We can now have small isolated components

• Physical separation

• You won’t break my stuff – I won’t break yours

• Piece components together that you need

39



COPYRIGHT 2017 MACC

CONSTRAINTS

◼ Bringing everything together

• How do you perform complex queries

• How do you report out large data graphs

• Separation is problematic – when everything is related

40



COPYRIGHT 2017 MACC

WHAT NOT TO DO

41



COPYRIGHT 2017 MACC

WHAT WE DID WRONG

◼ Our first Microservice architecture

• Atomics only – No coupling

• Skip the API Gateway – over kill

• Force consumers to merry up data

42



COPYRIGHT 2017 MACC

WHAT WE DID WRONG

◼ Let’s try it again – Round two

• Too many microservices.. Too granular

• Mass Data import was (almost) impossible

• No messages or data movement

• …. Failed to explain the benefits of the architecture

43



COPYRIGHT 2017 MACC

NOW WHERE TO?

◼ The world is changing again!

• Serverless Technology
• AWS Lambda Functions
• Azure Functions
• Serverless Templates (SAM)

• Data Analytics
• IoT – data collection component
• Data Lake – not your average data warehouse

44



COPYRIGHT 2017 MACC

OTHER “OUTLIERS”

◼ Spin-Offs of Microservices

• GraphQL

• The gang at Facebook

• Graph Databases and presentation

• How do we use this in a Microservice?

45



COPYRIGHT 2017 MACC

THANK YOU

◼ Please reach out – I’m happy to help

46


