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MACC MISSION

◼ The Midwest Architecture Community Collaboration’s (MACC) purpose is to bring all domains of 
architecture together to share information and techniques of interest to all of us. It is our shared belief that 
through collaboration, we can better understand and promote the significance of architecture to business 
success. 
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SOA DESIGN AND DEVELOPMENT

◼ Service Oriented Architecture (SOA)

• .NET Remoting
• Data Synchronization 
• WCF and SOAP protocol

• An then there was Roy Fielding…
• invented an architectural style called:

“Representational State Transfer”

• …. Or what we all refer to now as.. the “RESTFul” API
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SOA AND DDD

DDD???

• Domain Driven Design

• Middle Tier Development First Approach

• Strong understanding of your business domain

• … Eric Evans Book on DDD
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MICROSERVICES & DEVOPS

Microservices Architecture and Design

• Small units of work

• Isolation of components, code

• Automated deployments (CI/CD)
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NETFLIX “DEATH STAR” - +700 MICROSERVICES
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AMAZON.COM - ???? MICROSERVICES
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HISTORY

“You need to know the past…

 …to understand the future” 

~ Dr. Carl Segan
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CLIENT / SERVER APPROACH

Connecting clients to backend corporate servers

• Solved out data problem – data is in one place 

• Did not solve our distribution/deployment problem
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THE “BOOM” OF THE .COM

◼ Webpages or Web-Resources

• You have everything under the sun – the wild west

• ColdFusion development

• PHP development

• Backend processing

• …. And eventually the “Post Back” development
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API DEVELOPMENT

◼ Webpages or Web-Resources

• The idea of a stand alone webpage the served up data

• Browser applications could ingest this data 
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EVERYONE LOVES “JAVASCRIPT”

◼ The invention of SPA (Single Page Applications)

• We needed a better User Experience

• DevExpress / Infragistics / Telerik Controls

• Ruby on Rails

• Microsoft’s “Silverlight”… yes, you can breath now

• …. Everyone was struggling to have a better UI
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THE MARRIAGE WITH SPA

◼ The invention of Microservices

• Miniature little APIs

• Monolithic Systems are now in place… What do we do?
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THE MARRIAGE WITH SPA

◼ The invention of Microservices

• Miniature little APIs

• We can isolate business logic and ultimately business domains

• Monolithic Systems are now in place… What do we do?
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MICROSERVICES

Structure / Layout / Design
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GOALS – ENTIRE SYSTEM

◼ Overall goals for the entire set of Microservices

• Databases are isolated/separated

• Microservices are isolated/separated

• Different versions can interact with each other (with consumers)

• Quick/Automated deployments

• Consumers can plug and play
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OVERALL STRUCTURE

◼ Components – These are your basics

• Microservices

• “Atomic” and “Composite”

• Single/Isolated data storage system (each Microservice)

• API Gateway (front side caching)

• Data Warehouse (backend data movement)

• Messaging System
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OVERALL STRUCTURE
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OVERALL STRUCTURE
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OVERALL STRUCTURE
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OVERALL STRUCTURE
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GOALS – SINGLE SERVICE

◼ Overall goals with a single Microservice

• Built and checked in – 8 hours flat

• Built / Deployed / Tested in 16 hours flat (to DEV)

• Database/Data-storage - created automatically

• Documentation is automatically created (i.e. Swagger)
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INTERNAL STRUCTURE

◼ Microservice Layout for success

• 3-Tier Architecture

• Fully RESTful (do not deviate)

• URL Versioning (backwards compatible)

• Data storage ORM tool (very helpful)

• Unit tests (automated)
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INTERNAL STRUCTURE

◼ 3-Tier Architecture

• Presentation Layer (api endpoints)

• Business Layer (all logic here)

• Data Layer (almost fully generated)
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INTERNAL STRUCTURE

◼ Presentation Layer – URL Versioning
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INTERNAL STRUCTURE

◼ Presentation Layer – URL Versioning
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INTERNAL STRUCTURE

◼ Business Layer
◼ All logic resides here
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INTERNAL STRUCTURE

◼ Business Layer – DO NOT EXPOSE DATA ENTITIES!

29



COPYRIGHT 2017 MACC

INTERNAL STRUCTURE

◼ Data Layer – Automate it!
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DEVOPS (DEVELOPMENT & OPERATIONS)

Why is this so important?
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DEVOPS

◼ Development/Deployment Operations

• Need to get your code promoted INSTANTLY

• CI/CD – Continuous Integration / Continuous Deployment

• Automated testing and code coverage
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DEVOPS

◼ Automated builds…

33



COPYRIGHT 2017 MACC

DEVOPS

◼ “Releasing” code
◼ Pushing code out
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DEVOPS

◼ “Releasing” code
◼ Pushing code out
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DEVOPS

◼ “Releasing” code
◼ Pushing code out
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DEVOPS

◼ Creating components in the cloud automatically
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BENEFITS - VS - CONSTRAINTS
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BENEFITS

◼ Retiring the monolithic systems

• We can now have small isolated components

• Physical separation

• You won’t break my stuff – I won’t break yours

• Piece components together that you need
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CONSTRAINTS

◼ Bringing everything together

• How do you perform complex queries

• How do you report out large data graphs

• Separation is problematic – when everything is related
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WHAT NOT TO DO
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WHAT WE DID WRONG

◼ Our first Microservice architecture

• Atomics only – No coupling

• Skip the API Gateway – over kill

• Force consumers to merry up data
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WHAT WE DID WRONG

◼ Let’s try it again – Round two

• Too many microservices.. Too granular

• Mass Data import was (almost) impossible

• No messages or data movement

• …. Failed to explain the benefits of the architecture
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NOW WHERE TO?

◼ The world is changing again!

• Serverless Technology
• AWS Lambda Functions
• Azure Functions
• Serverless Templates (SAM)

• Data Analytics
• IoT – data collection component
• Data Lake – not your average data warehouse
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OTHER “OUTLIERS”

◼ Spin-Offs of Microservices

• GraphQL

• The gang at Facebook

• Graph Databases and presentation

• How do we use this in a Microservice?
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THANK YOU

◼ Please reach out – I’m happy to help
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