

Aligning Business and Data Strategy

Presenter

Ross McNeely

Vice President Information Technology
Tail Wind Informatics

Architecture

Goal

Map Business
 Capabilities to
 Data Mgmt
 Systems

Input

- Architecture
 - Business
 - Security
 - Application
 - Infrastructure
- Best Practices

Process

- Data Assessment
- GAP Analysis
- Project Mgmt
- Integrate/Develop

Output

- Data Architecture
- Contextual Inventory
- Cross Function
 Data Model
- Integration

- Data Utilization
- Data Maturity

Data Security

Goal

- Meet Regulator& Contractual obligations
- Appropriate data access

Feedback

- Audit Metrics
- Policy to Implementation tracking

Input

- RegulatoryRequirements
- Business Policies
- Best Practices

Process

- Risk Assessment
- GAP Analysis
- Project Mgmt
- Integrate/Develop

- Security
 Architecture
 - Network
 - Identity
- Security Rules
- Access Rules

Metadata

Goal

- Data in context
- Data usage standards

Feedback

- Scorecard
- Repo growth & usage

Input

- Business Metadata
- System Metadata
- Process Metadata
- Org Metadata

Process

- Metadata
 Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

- Metadata
 Architecture
- Meta Model
- Data Usage
 - Contextual
 - Conceptual
 - Logical
 - Physical
 - Detailed

Data Storage

Goal

- Availability
- Performance
- Accuracy

Service Level Agreements

Data Requirements

Input

- Volume
- Variety
- Velocity

Process

- Data Storage
 Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- Data Storage & OperationsStrategy
- Data Model
 Criteria
- Continuity & Performance

- Storage Growth
- Operation & Performance Metrics

Data Modeling

Goal

- Data aligns with requirements
- Data viewed in perspective

Input

- DataRequirements
- Data Flows
- Data Elements
- BusinessRequirements

Process

- Data Model
 Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- Data Model
 Architecture
- Conceptual Model
- Logical Model
- Physical Model

Feedback

Data Model
 Scorecard

IoT

Goal

Improve
 Product/Solution
 based on Actual
 Usage Telemetry

Input

- Sensor Best Practices
- Telemetry Data
- **Device Models**

Process

- IoT Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- IoT Architecture
- Telemetry Recommendations
- Capture

- Telemetry Rate
- Device Coverage
- Value

Data Integration

Goal

- Share data
- Reduce complexity
- Drive innovation

Feedback

- Data flow rate
- ComplexityScore

Input

- System Req.
- Regulation Req.
- Innovation Req.
- Best Practices
- SpecificationStandards

Process

- Integration Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

- Integration
 Architecture
- Integration Flows and Types
- SLA & Access
 Agreements

Master Data Mgmt

Goal

- AuthoritativeSource
- BusinessDomain Asset

Input

- Functional Req.
- Source Mapping
- Data Dictionary
- Business Rules
- Best Practices

Process

- Master Data
 Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- Master Data
 Architecture
- Reference Data Architecture
- Master Data Mgmt

- Rate of Change
- Outliers
- Utilization

Big Data

Goal

Capture &
 Utilize the 3Vs
 of Data

Input

- Business Req.
- Data, Data, Data

Process

- Data Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- Append Data
 Model Architecture
- Append Integration
 Architecture
- Additional Data Models
- Additional Integration Flows

- Value
- Impact
- Attainability
- Usage

Data Science

Goal

Discover

 opportunities
 based what
 could and
 should happen

Feedback

- Usage Matrix
- Drift Detection
- Maturity Level

Input

- Preliminary Data Analysis
- Hypotheses UseCases
- Data Sources
- Best Practices

Process

- Use Case
 Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

- Data Science
 Architecture
- Append Data Arch
 - Model
 - Integration
 - Storage
- Algorithms

Business Intelligence

Goal

Understand & Monitor processes

Input

- Business Req.
- Supporting Metrics
- Leading Metrics
- Key Performance Indicators

Process

- Analysis UsageAssessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- BI Architecture
- Dashboards
- Paginated Reports

- Mapped Processes
- KPI Coverage

Data Quality

Goal

 Increase value of data assets

Input

- Data QualityAgreements
 - Domain
 - Source
 - Etc
- Best Practices

Process

- DQ Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- DQ Architecture
- DQ Thresholds
- DQ RemediationPlans

- Accuracy
- Completeness
- Consistency
- Integrity

- Reasonability
- Timeliness
- Uniqueness
- Validity

Artificial Intelligence

Goal

 Scalable human mimicry

Input

- Detailed Manual Business Use Case
- Data Sources

Process

- Al Assessment
- Gap Analysis
- Project Mgmt
- Integrate/Develop

Output

- Al Architecture
- Automation Practices
 - Text
 - Vision
 - Language

- Accuracy
- Impact
- Value