FORRESTER

The architect’s guide to
generative Al

Charles Betz
Vice President
Research Director

| GitHub Calavera” main project |

o uve
oo
wt
Lowa
Reckcate Cars
ra
2agrg CA
orvwrorraerd
JOK
Cret cuent QA environment “TBD" \
Dev Environment Production Environment "Cara”
*Manos” Chef
{_JOK | _Tomcat | (chent)
Virtualbox
Base enablers | \44,aib0x Chef Kitchen
< Virtualbox Berkshelf
it V. nt " " .

T AT

O BN
S SV SRS AR AT N

- o |

2
Lo e 2
SN e

~ "4

310 \\ \
\’Q ‘

..ﬁ. . p »

wt
r

General Value Propositions

Identifying similarities in complex data.
Knowledge management and articulation.
Narrative ideation.

Natural language interaction with digital systems.

Image recognition and generation

As with steam, electricity, and computing itself, domain
specific value propositions are too numerous to list.

What as an EA do |
need to know about

What are GenAl’s
impacts on EA?

« WSJ Investor of the
Year

o Star of Erin

Brockovitch and
Mystic Pizza

» Granddaughter of
Richard Dreyfuss

| B 4 Y'Y,"""’T“;"""YYf‘T"— ’!(ff

Lawyers have real bad day in court after
citing fake cases made up by ChatGPT

Lawyers fined $5K and lose case after using Al chatbot "gibberish" in filings.

“Gibberish,” “borders on nonsensical”

The fake ese v. China Southern Airlines excerpt submitted by LoDuca and Schwartz, supposedly issued by
the US Court of Appeals for the 11th C|rcu1t "shows stylistic and reasoning flaws that do not generally appear
in decisions issued by United States Courts of Appeals,” Castel wrote. "Its legal analysis is gibberish... The
summary of the case's procedural history is difficult to follow and borders on nonsensical.”

The Varghese decision also "includes internal citations and quotes from decisions that are themselves non-
existent," the judge noted. The other fake precedents submitted to the court had similar flaws.

It’s not just hallucination, it’s also plagiarism. “The complaint used the example prompt “Write
me a song about the death of Buddy Holly,” which led the large language model to spit out the
lyrics to Don Mclean’s “American Pie” word for word.” Universal Music Group vs Anthropic.

Langchain, APls, RAG, etc Invest here

Fine tune Be skeptical

Stolen from Damon Edwards

How not to do i1t

© Forrester Research, Inc. All rights reserved.

To win at GenAl, we need
to train a Large Language
Model on ALL of our
corporate data by next
month! No excuses!

Sure, we’ll have a model
that sounds a lot like
you, including inaccurate
and unsupported
mansplaining.

ok

oy

[Af

3

oundational LLM]..

T, =
N 1P

r
" ']) g) ” l g ,' M, y
SRR g o) 2ot |
. e /) /2, T~
: / —
i —

T p T -

. has no connection to authoritative sources, so it tends to hallucinate or speculate incorrectly.

(David Shapiro)

||| LLEBACE -
7%

U’ —
[
=] 115
=1 1)
=8 FF.-
&

‘ﬁ

The Building Blocks of Generative Al (©) e

Model Safety

Model Supervision / Al Observability

e m-

Fine-Tuning

Orchesfration / Vector Databases

Frameworks

Foundational Models /
LLMs

Semiconductors, Cloud
Hosting, Inference

=

Attention Is All You Need

S (B B

PE(pos.2i) = sin(pos/10000%"/ @) Z
pos,2i :

PE(pos.2i41) = cos(pos/100002"/ dmeer)

—— T —
N - %

- ——
-
e -

— —

Efficient Estimation of Word Representations in
Vector Space
W === = - W7 LSS
- The training complexity of this architecture is proportional to
Q=Cx(D+ D xlogs(V)), (5)
where (' is the maximum distance of the words. Thus, if we choose C' = 5, for each training word
we will select randomly a number R in range < 1;C' >, and then use R words from history and

-

\17
<« [

Linux kernel diagram

functions ;» (DDA system I I processing I memory I I storage I networking I
layers 1 ‘ ‘ l ‘ ‘
'
user space char o memory files and
interfaces devices access directories
virtual input proc & sysfs Virtual protocol
subsystems subsystem file systems File System families

"

electronics, keyboard, mouse, buses:
hardware display, audio PCL,USB ...

storage devices: network:
SCSI, NVMe ... Ethernet, WiFi ...

https://makelinux.github.io/kernel/diagram/

Clients (Source)

Web browser

Mobile app

Full-duplex
(websockets!HTTP2)
|

Synchronous

PR

Asynchronous

Existing services (Target)

request-response requesl-response FEQUesLIeSPONSe Microservices
Content Delivery <(000-b'00k'ﬁ9). Galew:yplllngress <(non-blockmg) Integration (non-blockmg)»
Network (CDN) Controller Plattorm
Synchronous Synchronous Synchronous
COTS
Pub-sub,
Store-forward,
Asynchroncus bach
rocessin
P g e,
2 realtime FEQUeSLIeSPONSe
processing (non-blocking)
Event processing |- >
Push Nolifications Data store Saa$ apps
platform Asynchroncus Synchronous
f Pub-sub
Asynchronous

request-response
(blocking)
e E———

Synchronous

https://chanakaudaya.medium.com/a-futuristic-view-of-building-distributed-systems-with-messaging-560d0652513a

20

Prompt enrichment (RAG)

Data Sources

R A <<batch>> Vector Embedded -
== > Embedding Knowledge

3
‘ T;.I 1 Vector store
.///-
///
,/'///
[] -
Prompt e
A D I Enrichment I
—» Retriever > 1 ™ |
User I ~ -
A
Natural Language Natural
Response Language
E Generator

Diagram copyright Forrester Research, all rights reserved. 21

Primitives 1

_--q

| coricnmen | The prompt is the query, what the GenAl architecture responds to. In the simplest
model, the end user generates the prompt. Prompts can be simple questions or

I Input I complex instructions, guiding the model's output. Prompts originated with the
user and then may be enriched in various ways to get the best results.

I~ =1

Embeddings compress complex data into simple yet powerful multi-dimensional
Embedding representations (“vectors”). The embedding model (such as BERT) encodes

Model words, sentences, and paragraphs into embeddings which are then stored in the
vector database.

The NLG is the best known component of this architecture, due to ChatGPT.
They are based on neural networks trained with massive amounts of data. NLGs
Natural are able to answer general knowledge questions through essentially calculating
Language the probability of one word following another. They typically do not remember

Generator their sources of knowledge (they can’t cite their answers, -- they are not
“‘grounded”) and are prone to “coherent nonsense” (aka hallucinations).

Primitives 11

Retriever

Vector store

v

Gates can classify the type of prompt (summarize vs describe) for more efficient
processing, and ensure that the Al architecture produces safe, secure, and unbiased
outputs. These can be implemented via model training, or pre-or post-processing filters
(e.g. the Al refuses to answer questions about how to build weapons, and evaluates its
output for racist implications).

Code that processes an input and retrieves relevant context from one or more
Knowledge Stores. Retrievers may call embedding models to encode input prompts and
intent metadata to be compared to Vector Stores. Types of Retrievers include keyword,
sparse passage, dense passage and ensemble. Dense passage and ensemble are the
current state of the art in GenAl applications.

Knowledge stores are a class of building building blocks that form and intelligence layer
supporting GenAl powered applications. Since generative Al model training and fine
tuning is expensive and difficult, the model’s knowledge is often fixed in time and again
is not grounded. Current knowledge is important context to ensure outputs are helpful.
Specific knowledge stores include Vector Stores, Search Indices, Knowledge Graphs,
etc.

Frameworks provide an overall execution architecture for the pipeline interactions,
abstracting direct interaction with LLMs and other building blocks into one common, easy
to program environments.

Al as architecture assistant

can you explain this diagram?

Board snger

Rl B Lo A
LR L L T

- -

L T

1

N

W

A

. Clients (Source)

* Web browser & Mobile app: These are the client-side applications

or interfaces through which end-users interact with the system.
* The diagram shows two methods for the clients to communicate
with the backend:

* Synchronous: The client sends a request and waits for a
response. This is typical of many web and mobile
interactions.

* Full-duplex (websockets/HTTP2): This is a bi-directional
communication channel. Unlike traditional HTTP where the
client sends a request and waits for a response, in a full-
duplex mode (like websockets), both client and server can
send messages at any time.

. Content Delivery Network (CDN)
* CDNs are used to deliver content to clients efficiently. Clients
connect to the nearest edge location of a CDN, reducing latency.
The CDN communicates synchronously using a non-blocking
request-response pattern.
. APl Gateway/Ingress Controller
* This acts as the entry point to the system's backend. It routes
incoming requests to the appropriate service or component.
. Integration Platform
* Facilitates communication and data flow between various
services or components of the system.
. Push Notifications platform
* Allows the system to send real-time notifications to clients. The
notifications can be triggered by various events in the system and
are delivered to the clients asynchronously using a publish-

subscribe (pub-sub) model.

6. Data store

This is where the system's data is stored. It supports real-time
processing of data, and can communicate with other components

both synchronously and asynchronously.

7. Event processing

This component processes events in real-time, possibly

responding to changes or updates in the data.

S. Existing services (Target)

Microservices: Small, independent services that run specific
business functions.

COTS (Commercial Off-The-Shelf) software: Pre-built software
products used within the system.

Legacy: Older systems or components that are still in use.

SaaS apps: Software-as-a-Service applications that are hosted
externally but integrated with the system.

Database: A storage system that supports synchronous, blocking

request-response communication.

Overall, the diagram depicts how different components of the system

interact with each other, whether it's synchronously or

asynchronously, and via which communication pattern (e.g., request-

response, pub-sub). The architecture supports a mix of real-time

processing, data storage, and integration with both modern and

legacy components.

»)

26

Bia Please drawan entity relationship diagram of a customer order management system in
Mermaid UML syntax

G5 Certainly! Below is an example of how you might represent a simple customer order

management system using Mermaid's UML syntax:

mermaid t] Copy code

erDiagram
CUSTOMER | |--o{ ORDER : places
ORDER ||--|{ ORDER-ITEM : contains

In this diagram:

"CUSTOMER " is connected to "ORDER " with a one-to-many relationship, as a customer can
place multiple orders.

"ORDER" is connected to "ORDER-ITEM" with a one-to-many relationship, since an order can
contain multiple items.

"PRODUCT " is connected to "ORDER-ITEM™ with a one-to-many relationship, as a product can
be in multiple order items (across different orders).

Each entity has a primary key (PK) denoted as “id".

Foreign keys (FK) denote references to other entities.

CUSTOMER

string | id PK | Unique identifier‘

string | name ’ \ Customer’'s name ‘
string | email Customer’'s email J
places

/
/| \
[,ﬁ

ORDER

string | productld | FK

Reference to PRODUCT

int

quantity

Number of products ordered

| i PRODUCT
string | id PK | Unique identifier
I t string | id PK | Unique identifier
string | customerld | FK | Reference to CUSTOMER
; - string | name Name of the product
date | orderDate Date when order was placed
f float | price Price of the product
string | status Current status of the order
\ ‘\
\ /“
\ /0
contains ordered in
\-_\\\ , - \‘/ /
/*\;?\‘\ o
ORDER-ITEM
string | orderld FK | Reference to ORDER

please draw me an interaction diagram of a retrieval augmented generation system in
Mermaid UML syntax

In this interaction:

* The "User" sends a query to the "Retriever" to generate text about a certain topic (X).

)))) * The "Retriever requests relevant documents from the “Database .
A Retrieval-Augmented Generation (RAG) system typically involves components such as a
. * The "Database " returns the documents back to the “Retriever".
retriever (to fetch relevant documents), a generator (to produce text), and a database (to
* The "Retriever’ then sends these documents to the “Generatox".
store the documents to be retrieved). Here's a sequence diagram in Mermaid UML syntax
* The "Generatoxr ' uses the documents to generate the text and sends the generated text

that shows how these components might interact during the generation process:
back to the “User".

mermaid) Copy code

sequenceDiagram
participant User
participant Retriever User Retriever Database Generator
participant Database

participant Generator Query("Generate text about X")

»
»

User->>+Retriever: Query("Generate text about X") Fetch relevant documents

A 4

Retriever->>+Database: Fetch relevant documents D
ocuments

Database-->>-Retriever: Documents -

Retriever->>+Generator: Generate text using Documents Generate text using Documents

v

Generator->>-User: Generated Text
Generated Text

A

User Retriever Database Generator

Strong
Challengers Contenders Performers Leaders

Stronger
current
offering

A

Current capabilities:

Natural language query and
summarization of repository artifacts and
collaboration conversations

REQUIRES that you actually have
definitions and collaborative information
In your repository!

Weaker
current
offering

Weaker strategy P Stronger strategy

Market presence

JoI01010) not evaluated

29

Infusing Al across the DevSecOps Continuum

Plan

Code

Bui

Id @&

Architectural Design

GAl based pair programming
Code & Unit Testing Generation
In IDE Secure Code Vulnerability
Solution

ML assisted code review selection
Al Assisted Code Review

Al Enabled collaboration
Suggestive Refactoring

Natural Language Requirements Gathering
NLP Requirements Analysis for inconsistency

and ambiguity

GAI Epic and User Story Generation
Effort Estimation using Neural Networks

GAl-assisted Threat Model Policy
Identification

Plan

Security
Is infused into all

actions and activities

Aggregated Merge Request Impact
Analysis

GAl-based identification of security
vulnerabilities

ML algorithm optimized build times
Al-Assisted Security Vulnerability
Detection

Software Composition Analysis

MITRE

Test

Natural Language Test Case Generation
Test Data Generation
Al Enabled test effectiveness predictions

Release
* Compliance Validation

* Reinforced Learning-based models

generate deployment scripts

* Al Enabled Failure Analysis

* Release Risk/Success Prediction
* Al Driven Cl/CD workflow automation

Deploy

Dynamic Environment
Provisioning and
Deployment Optimization
Realtime Rollback
Al-assisted Log Aggregation

AlOps engines
provide correlation
and predictive
monitoring

Monitor

E2E Functional Test Execution o—
Intelligent Failure/Self Healing Testing
NLP based API based contract definition

Event Correlation

False Alarm Filtering
Self-Healing Techniques

Root Cause Analysis

Observe system performance
Usability Patterns
Monitoring

o

Operate

Deterministic Al based ticketing and
support allocation

Al Based Self Healing Decision

LLM Integration for Virtual Assistance
GAI/GPT powered Knowledge Bases

-~

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED PR_22-03817-8

My sources

Rowan Curran Mike Gualtieri Martha Bennett Jeff Pollard Sucharita Kodali Carlos Casanova
Al, ML, and data science Al technologies, platforms, and practices Emerging technologies Security and risk Digital business strategy AlOps, observability

Michele Goetz Alvin Nguyen Julie Mohr Brandon Purcell Alla Valente Brian Hopkins
Data management and architecture Technical and platform architecture Knowledge management Customer analytics and Al Governance, risk and compliance Emerging tech

pevors N
@0 Medium @ reddit Combinator et | {158

A ;.‘m |

Dan McCreary Tracy Bannon Damon Edwards

